論文の概要: Generative Diffusion-based Downscaling for Climate
- arxiv url: http://arxiv.org/abs/2404.17752v1
- Date: Sat, 27 Apr 2024 01:49:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 19:30:48.512295
- Title: Generative Diffusion-based Downscaling for Climate
- Title(参考訳): 発生的拡散に基づく気候のダウンスケーリング
- Authors: Robbie A. Watt, Laura A. Mansfield,
- Abstract要約: 機械学習アルゴリズムは、ダウンスケールに対する効率的で正確なアプローチであることを証明している。
ダウンスケーリングに対する生成的,拡散的アプローチが,正確なダウンスケール結果をもたらすことを示す。
この研究は、信頼性と詳細な気候予測を提供する上で、拡散に基づくダウンスケーリング技術の可能性を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Downscaling, or super-resolution, provides decision-makers with detailed, high-resolution information about the potential risks and impacts of climate change, based on climate model output. Machine learning algorithms are proving themselves to be efficient and accurate approaches to downscaling. Here, we show how a generative, diffusion-based approach to downscaling gives accurate downscaled results. We focus on an idealised setting where we recover ERA5 at $0.25\degree$~resolution from coarse grained version at $2\degree$~resolution. The diffusion-based method provides superior accuracy compared to a standard U-Net, particularly at the fine scales, as highlighted by a spectral decomposition. Additionally, the generative approach provides users with a probability distribution which can be used for risk assessment. This research highlights the potential of diffusion-based downscaling techniques in providing reliable and detailed climate predictions.
- Abstract(参考訳): ダウンスケーリング(超高解像度)は、気候変動の潜在的なリスクと影響に関する詳細な、高解像度の情報を提供する。
機械学習アルゴリズムは、ダウンスケールに対する効率的で正確なアプローチであることを証明している。
ここでは, ダウンスケーリングに対する生成的, 拡散的アプローチが, 正確なダウンスケール結果をもたらすことを示す。
ERA5を0.25ドル〜レゾリューションで、粗いきめ細かいバージョンを2ドル〜レゾリューションで回収する理想的な設定に焦点を合わせます。
この拡散法は、スペクトル分解によって強調されるように、標準のU-Net、特に微細スケールでの精度が優れている。
さらに、生成的アプローチは、リスクアセスメントに使用できる確率分布をユーザに提供します。
この研究は、信頼性と詳細な気候予測を提供する上で、拡散に基づくダウンスケーリング技術の可能性を強調している。
関連論文リスト
- Capturing Climatic Variability: Using Deep Learning for Stochastic Downscaling [0.0]
気候変動に適応するには、正確な局地的な気候情報が必要である。
ダウンスケーリング中の変動のキャプチャは、不確実性を推定し、極端な事象を特徴づけるのに不可欠である。
本稿では,GANのキャリブレーションを3つの方法で改善する手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T03:04:10Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Diffusion Model-based Probabilistic Downscaling for 180-year East Asian Climate Reconstruction [8.132450337453525]
本稿では,拡散確率的ダウンスケーリングモデル(DPDM)を気象分野に導入する。
このモデルは、データを1degから0.1degに効率的に変換することができる。
東アジアにおける月次表面変数の180年間のデータセットを生成するために,本モデルを適用した。
論文 参考訳(メタデータ) (2024-02-02T01:34:33Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
本稿では,気候データ,特に地域規模での降水量について,より詳細な生成モデルを提案する。
複数のLR気候変数に条件付き拡散確率モデルを用いる。
以上の結果から,下降気候データにおける条件拡散モデルの有効性が示唆された。
論文 参考訳(メタデータ) (2023-12-12T09:39:52Z) - Precipitation Downscaling with Spatiotemporal Video Diffusion [19.004369237435437]
この研究は、最近のビデオ拡散モデルを拡張して、超解像を降水させる。
決定論的ダウンスケーラと時間条件付き拡散モデルを用いて雑音特性と高周波パターンを抽出する。
カリフォルニアとヒマラヤを用いたCRPS, MSE, 降水分布の把握, および定性的側面の解析により, データ駆動型降水ダウンスケーリングの新しい標準として本手法を確立した。
論文 参考訳(メタデータ) (2023-12-11T02:38:07Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
GAN(Generative Adversarial Network)は、コンピュータビジョンコミュニティによって超高解像度問題で成功することが実証されている。
GANとVAE-GANは、高分解能で空間的に整合した降水マップを作成しながら、最先端のポイントワイズポストプロセッシング手法の統計的特性と一致することを示す。
論文 参考訳(メタデータ) (2022-04-05T07:19:42Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
因果グラフ(CG)は、データ分散の背後にあるデータ生成プロセスの知識のコンパクトな表現である。
本研究では,条件付き独立性(CI)関係の事前知識を活用可能なモデルに依存しないデータ拡張手法を提案する。
本手法は,小データシステムにおける予測精度の向上に有効であることを実験的に示した。
論文 参考訳(メタデータ) (2021-02-27T06:13:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。