論文の概要: Capturing Climatic Variability: Using Deep Learning for Stochastic Downscaling
- arxiv url: http://arxiv.org/abs/2406.02587v1
- Date: Fri, 31 May 2024 03:04:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:49:24.586439
- Title: Capturing Climatic Variability: Using Deep Learning for Stochastic Downscaling
- Title(参考訳): 確率変数のキャプチャ:確率的ダウンスケーリングにおけるディープラーニングの利用
- Authors: Kiri Daust, Adam Monahan,
- Abstract要約: 気候変動に適応するには、正確な局地的な気候情報が必要である。
ダウンスケーリング中の変動のキャプチャは、不確実性を推定し、極端な事象を特徴づけるのに不可欠である。
本稿では,GANのキャリブレーションを3つの方法で改善する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Adapting to the changing climate requires accurate local climate information, a computationally challenging problem. Recent studies have used Generative Adversarial Networks (GANs), a type of deep learning, to learn complex distributions and downscale climate variables efficiently. Capturing variability while downscaling is crucial for estimating uncertainty and characterising extreme events - critical information for climate adaptation. Since downscaling is an undetermined problem, many fine-scale states are physically consistent with the coarse-resolution state. To quantify this ill-posed problem, downscaling techniques should be stochastic, able to sample realisations from a high-resolution distribution conditioned on low-resolution input. Previous stochastic downscaling attempts have found substantial underdispersion, with models failing to represent the full distribution. We propose approaches to improve the stochastic calibration of GANs in three ways: a) injecting noise inside the network, b) adjusting the training process to explicitly account for the stochasticity, and c) using a probabilistic loss metric. We tested our models first on a synthetic dataset with known distributional properties, and then on a realistic downscaling scenario, predicting high-resolution wind components from low-resolution climate covariates. Injecting noise, on its own, substantially improved the quality of conditional and full distributions in tests with synthetic data, but performed less well for wind field downscaling, where models remained underdispersed. For wind downscaling, we found that adjusting the training method and including the probabilistic loss improved calibration. The best model, with all three changes, showed much improved skill at capturing the full variability of the high-resolution distribution and thus at characterising extremes.
- Abstract(参考訳): 変化する気候に適応するには正確な局地的な気候情報が必要であるが、計算的に難しい問題である。
近年の研究では、複雑な分布とダウンスケールの気候変数を効率的に学習するために、GAN(Generative Adversarial Networks)を用いている。
ダウンスケーリング中の変動を捉えることは、不確実性を推定し、極端な出来事を特徴づけるのに不可欠である。
ダウンスケーリングは未決定の問題であるため、多くの微細な状態は粗解状態と物理的に一致している。
この不正な問題を定量化するためには、ダウンスケーリング手法は確率的であり、低分解能入力で条件付けられた高分解能分布から実例をサンプリングすることができる。
それまでの確率的ダウンスケーリングの試みでは、モデルが完全な分布を表現できなかったため、かなり過小評価されている。
GANの確率的キャリブレーションを改善するための3つの方法を提案する。
a) ネットワーク内のノイズを注入すること
b) 確率性を明確に説明するためにトレーニングプロセスを調整すること、及び
c) 確率的損失指標を用いて。
我々はまず、既知の分布特性を持つ合成データセットを用いて、続いて現実的なダウンスケーリングシナリオを用いて、低分解能気候共変量からの高分解能風成分を予測した。
単独でノイズを注入することで、合成データを用いたテストでは条件付きおよび完全分布の質が大幅に向上するが、風力ダウンスケーリングでは性能が低下し、モデルが分散しにくい状態に留まった。
風下スケーリングでは,トレーニング方法を調整し,確率的損失を含むキャリブレーションが改善された。
最高のモデルでは、3つの変更すべてで、高解像度分布の完全な変動を捉え、極端を特徴づける能力が大幅に向上した。
関連論文リスト
- Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling [3.8178633709015446]
地球規模の気候モデルや衛星データから粗解射影を推定すると、下降問題は、より詳細な地域気候データを推定することを目的としている。
この問題は、気候変動による重大なリスクに対する効果的な適応、緩和、レジリエンスに社会的に不可欠である。
そこで本稿では, 空間的変動を抑えつつ, 微細な特徴を保ちながら, 空間的変動を捉えるためのKriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM)を提案する。
論文 参考訳(メタデータ) (2024-10-21T04:24:10Z) - Informed Correctors for Discrete Diffusion Models [32.87362154118195]
モデルで学習した情報を活用することにより、より確実に離散化誤差に対処できる情報修正系を提案する。
また,$k$-Gillespie'sも提案する。これは,各モデル評価をよりよく活用するサンプリングアルゴリズムで,$tau$-leapingの速度と柔軟性を引き続き享受する。
いくつかの実・合成データセットにおいて,情報付き修正器を用いた$k$-Gillespieは,より低い計算コストで高い品質のサンプルを確実に生成することを示す。
論文 参考訳(メタデータ) (2024-07-30T23:29:29Z) - Generative Diffusion-based Downscaling for Climate [0.0]
機械学習アルゴリズムは、ダウンスケールに対する効率的で正確なアプローチであることを証明している。
ダウンスケーリングに対する生成的,拡散的アプローチが,正確なダウンスケール結果をもたらすことを示す。
この研究は、信頼性と詳細な気候予測を提供する上で、拡散に基づくダウンスケーリング技術の可能性を強調している。
論文 参考訳(メタデータ) (2024-04-27T01:49:14Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Adaptive Temperature Scaling for Robust Calibration of Deep Neural
Networks [0.7219077740523682]
本研究では、信頼性スケーリングの課題、特に温度スケーリングを一般化するポストホック手法に焦点を当てる。
ニューラルネットワークのような複雑なデータモデルがたくさん存在すると、パフォーマンスは向上するが、データ量に制限がある場合には失敗する傾向にある。
本研究では,エントロピーに基づく温度スケーリングを提案し,そのエントロピーに応じて予測の信頼性を尺度化する。
論文 参考訳(メタデータ) (2022-07-31T16:20:06Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
GAN(Generative Adversarial Network)は、コンピュータビジョンコミュニティによって超高解像度問題で成功することが実証されている。
GANとVAE-GANは、高分解能で空間的に整合した降水マップを作成しながら、最先端のポイントワイズポストプロセッシング手法の統計的特性と一致することを示す。
論文 参考訳(メタデータ) (2022-04-05T07:19:42Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
ドメイン適応と予測不確実性文学を結びつけて、挑戦的な未知分布のモデル精度を予測する。
分類器の予測における信頼度(DoC)の差は,様々な変化に対して,分類器の性能変化を推定することに成功した。
具体的には, 合成分布と自然分布の区別について検討し, その単純さにもかかわらず, DoCは分布差の定量化に優れることを示した。
論文 参考訳(メタデータ) (2021-07-07T15:50:18Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。