Un análisis bibliométrico de la producción científica acerca del agrupamiento de trayectorias GPS
- URL: http://arxiv.org/abs/2404.17761v1
- Date: Sat, 27 Apr 2024 02:39:13 GMT
- Title: Un análisis bibliométrico de la producción científica acerca del agrupamiento de trayectorias GPS
- Authors: Gary Reyes, Laura Lanzarini, César Estrebou, Aurelio F. Bariviera,
- Abstract summary: Clustering algorithms or methods for GPS trajectories are in constant evolution due to the interest aroused in part of the scientific community.
This work aims to analyze the scientific production that exists around the topic "GPS trajectory" by means of bibliometrics.
- Score: 0.3124884279860061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering algorithms or methods for GPS trajectories are in constant evolution due to the interest aroused in part of the scientific community. With the development of clustering algorithms considered traditional, improvements to these algorithms and even unique methods considered as "novelty" for science have emerged. This work aims to analyze the scientific production that exists around the topic "GPS trajectory clustering" by means of bibliometrics. Therefore, a total of 559 articles from the main collection of Scopus were analyzed, previously filtering the generated sample to discard any article that does not have a direct relationship with the topic to be analyzed. This analysis establishes an ideal environment for other disciplines and researchers, since it provides a current state of the trend of the subject of study in their field of research. -- Los algoritmos o m\'etodos de agrupamiento para trayectorias GPS se encuentran en constante evoluci\'on debido al inter\'es que despierta en parte de la comunidad cient\'ifica. Con el desarrollo de los algoritmos de agrupamiento considerados tradicionales han surgido mejoras a estos algoritmos e incluso m\'etodos \'unicos considerados como "novedad" para la ciencia. Este trabajo tiene como objetivo analizar la producci\'on cient\'ifica que existe alrededor del tema "agrupamiento de trayectorias GPS" mediante la bibliometr\'ia. Por lo tanto, fueron analizados un total de 559 art\'iculos de la colecci\'on principal de Scopus, realizando previamente un filtrado de la muestra generada para descartar todo aquel art\'iculo que no tenga una relaci\'on directa con el tema a analizar. Este an\'alisis establece un ambiente ideal para otras disciplinas e investigadores, ya que entrega un estado actual de la tendencia que lleva la tem\'atica de estudio en su campo de investigaci\'on.
Related papers
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
We propose a systematic framework for analyzing the evolution of research topics in a scientific field using causal discovery and inference techniques.
We define three variables to encompass diverse facets of the evolution of research topics within NLP.
We utilize a causal discovery algorithm to unveil the causal connections among these variables using observational data.
arXiv Detail & Related papers (2023-05-22T11:08:00Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - Mapping Research Trajectories [0.0]
We propose a principled approach for emphmapping research trajectories, which is applicable to all kinds of scientific entities.
Our visualizations depict the research topics of entities over time in a straightforward interpr. manner.
In a practical demonstrator application, we exemplify the proposed approach on a publication corpus from machine learning.
arXiv Detail & Related papers (2022-04-25T13:32:39Z) - DRIFT: A Toolkit for Diachronic Analysis of Scientific Literature [0.7349727826230862]
We open source DRIFT, which allows researchers to track research trends and development over the years.
The analysis methods are collated from well-cited research works, with a few of our own methods added for good measure.
To demonstrate the utility and efficacy of our tool, we perform a case study on the cs.CL corpus of the arXiv repository and draw inferences from the analysis methods.
arXiv Detail & Related papers (2021-07-02T17:33:25Z) - Evaluating the state-of-the-art in mapping research spaces: a Brazilian
case study [0.0]
Two recent works propose methods for creating research maps from scientists' publication records.
We evaluate these models' ability to predict whether a given entity will enter a new field.
We conduct a case study to showcase how these models can be used to characterize science dynamics in the context of Brazil.
arXiv Detail & Related papers (2021-04-07T18:14:41Z) - Domain Generalization: A Survey [146.68420112164577]
Domain generalization (DG) aims to achieve OOD generalization by only using source domain data for model learning.
For the first time, a comprehensive literature review is provided to summarize the ten-year development in DG.
arXiv Detail & Related papers (2021-03-03T16:12:22Z) - Learning Structures in Earth Observation Data with Gaussian Processes [67.27044745471207]
This paper reviews the main theoretical GP developments in the field.
New algorithms that respect the signal and noise characteristics, that provide feature rankings automatically, and that allow applicability of associated uncertainty intervals are discussed.
arXiv Detail & Related papers (2020-12-22T10:46:37Z) - A Survey of Embedding Space Alignment Methods for Language and Knowledge
Graphs [77.34726150561087]
We survey the current research landscape on word, sentence and knowledge graph embedding algorithms.
We provide a classification of the relevant alignment techniques and discuss benchmark datasets used in this field of research.
arXiv Detail & Related papers (2020-10-26T16:08:13Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z) - Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations (from 2020 to 2024) [19.09373077982117]
Bio-inspired optimization methods, which mimic biological processes to solve complex problems, have gained popularity in recent literature.
The exponential rise in the number of bio-inspired algorithms poses a challenge to the future trajectory of this research domain.
arXiv Detail & Related papers (2020-02-19T12:34:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.