Mapping Research Trajectories
- URL: http://arxiv.org/abs/2204.11859v1
- Date: Mon, 25 Apr 2022 13:32:39 GMT
- Title: Mapping Research Trajectories
- Authors: Bastian Sch\"afermeier, Gerd Stumme, Tom Hanika
- Abstract summary: We propose a principled approach for emphmapping research trajectories, which is applicable to all kinds of scientific entities.
Our visualizations depict the research topics of entities over time in a straightforward interpr. manner.
In a practical demonstrator application, we exemplify the proposed approach on a publication corpus from machine learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Steadily growing amounts of information, such as annually published
scientific papers, have become so large that they elude an extensive manual
analysis. Hence, to maintain an overview, automated methods for the mapping and
visualization of knowledge domains are necessary and important, e.g., for
scientific decision makers. Of particular interest in this field is the
development of research topics of different entities (e.g., scientific authors
and venues) over time. However, existing approaches for their analysis are only
suitable for single entity types, such as venues, and they often do not capture
the research topics or the time dimension in an easily interpretable manner.
Hence, we propose a principled approach for \emph{mapping research
trajectories}, which is applicable to all kinds of scientific entities that can
be represented by sets of published papers. For this, we transfer ideas and
principles from the geographic visualization domain, specifically trajectory
maps and interactive geographic maps. Our visualizations depict the research
topics of entities over time in a straightforward interpr. manner. They can be
navigated by the user intuitively and restricted to specific elements of
interest. The maps are derived from a corpus of research publications (i.e.,
titles and abstracts) through a combination of unsupervised machine learning
methods.
In a practical demonstrator application, we exemplify the proposed approach
on a publication corpus from machine learning. We observe that our trajectory
visualizations of 30 top machine learning venues and 1000 major authors in this
field are well interpretable and are consistent with background knowledge drawn
from the entities' publications. Next to producing interactive, interpr.
visualizations supporting different kinds of analyses, our computed
trajectories are suitable for trajectory mining applications in the future.
Related papers
- The Ontoverse: Democratising Access to Knowledge Graph-based Data Through a Cartographic Interface [33.861478826378054]
We have developed a unique approach to data navigation that leans on geographical visualisation and hierarchically structured domain knowledge.
Our approach uses natural language processing techniques to extract named entities from the underlying data and normalise them against relevant semantic domain references and navigational structures.
This allows end-users to identify entities relevant to their needs and access extensive graph analytics.
arXiv Detail & Related papers (2024-07-22T10:29:25Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Towards Vision-Language Geo-Foundation Model: A Survey [65.70547895998541]
Vision-Language Foundation Models (VLFMs) have made remarkable progress on various multimodal tasks.
This paper thoroughly reviews VLGFMs, summarizing and analyzing recent developments in the field.
arXiv Detail & Related papers (2024-06-13T17:57:30Z) - AceMap: Knowledge Discovery through Academic Graph [90.12694363549483]
AceMap is an academic system designed for knowledge discovery through academic graph.
We present advanced database construction techniques to build the comprehensive AceMap database.
AceMap provides advanced analysis capabilities, including tracing the evolution of academic ideas.
arXiv Detail & Related papers (2024-03-05T01:17:56Z) - SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval [64.03631654052445]
Current benchmarks for evaluating MMIR performance in image-text pairing within the scientific domain show a notable gap.
We develop a specialised scientific MMIR benchmark by leveraging open-access paper collections.
This benchmark comprises 530K meticulously curated image-text pairs, extracted from figures and tables with detailed captions in scientific documents.
arXiv Detail & Related papers (2024-01-24T14:23:12Z) - Citation Trajectory Prediction via Publication Influence Representation
Using Temporal Knowledge Graph [52.07771598974385]
Existing approaches mainly rely on mining temporal and graph data from academic articles.
Our framework is composed of three modules: difference-preserved graph embedding, fine-grained influence representation, and learning-based trajectory calculation.
Experiments are conducted on both the APS academic dataset and our contributed AIPatent dataset.
arXiv Detail & Related papers (2022-10-02T07:43:26Z) - Evaluating the state-of-the-art in mapping research spaces: a Brazilian
case study [0.0]
Two recent works propose methods for creating research maps from scientists' publication records.
We evaluate these models' ability to predict whether a given entity will enter a new field.
We conduct a case study to showcase how these models can be used to characterize science dynamics in the context of Brazil.
arXiv Detail & Related papers (2021-04-07T18:14:41Z) - Semantic and Relational Spaces in Science of Science: Deep Learning
Models for Article Vectorisation [4.178929174617172]
We focus on document-level embeddings based on the semantic and relational aspects of articles, using Natural Language Processing (NLP) and Graph Neural Networks (GNNs)
Our results show that using NLP we can encode a semantic space of articles, while with GNN we are able to build a relational space where the social practices of a research community are also encoded.
arXiv Detail & Related papers (2020-11-05T14:57:41Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
We present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications.
Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools.
We generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain.
arXiv Detail & Related papers (2020-10-28T08:31:40Z) - A Survey of Embedding Space Alignment Methods for Language and Knowledge
Graphs [77.34726150561087]
We survey the current research landscape on word, sentence and knowledge graph embedding algorithms.
We provide a classification of the relevant alignment techniques and discuss benchmark datasets used in this field of research.
arXiv Detail & Related papers (2020-10-26T16:08:13Z) - Topic Space Trajectories: A case study on machine learning literature [0.0]
We present topic space trajectories, a structure that allows for the comprehensible tracking of research topics.
We show the applicability of our approach on a publication corpus spanning 50 years of machine learning research from 32 publication venues.
Our novel analysis method may be employed for paper classification, for the prediction of future research topics, and for the recommendation of fitting conferences and journals for submitting unpublished work.
arXiv Detail & Related papers (2020-10-23T10:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.