論文の概要: Improving Smart Contract Security with Contrastive Learning-based Vulnerability Detection
- arxiv url: http://arxiv.org/abs/2404.17839v1
- Date: Sat, 27 Apr 2024 09:13:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 19:01:27.416549
- Title: Improving Smart Contract Security with Contrastive Learning-based Vulnerability Detection
- Title(参考訳): 対照的学習に基づく脆弱性検出によるスマートコントラクトセキュリティの改善
- Authors: Yizhou Chen, Zeyu Sun, Zhihao Gong, Dan Hao,
- Abstract要約: スマートコントラクト脆弱性に対するコントラスト学習強化型自動認識手法であるClearを提案する。
特にClearは、契約間のきめ細かい相関情報をキャプチャするために、対照的な学習(CL)モデルを採用している。
その結果,既存のディープラーニング手法よりも9.73%-39.99%高いF1スコアが得られることがわかった。
- 参考スコア(独自算出の注目度): 8.121484960948303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, smart contract vulnerabilities (SCVs) have emerged as a major factor threatening the transaction security of blockchain. Existing state-of-the-art methods rely on deep learning to mitigate this threat. They treat each input contract as an independent entity and feed it into a deep learning model to learn vulnerability patterns by fitting vulnerability labels. It is a pity that they disregard the correlation between contracts, failing to consider the commonalities between contracts of the same type and the differences among contracts of different types. As a result, the performance of these methods falls short of the desired level. To tackle this problem, we propose a novel Contrastive Learning Enhanced Automated Recognition Approach for Smart Contract Vulnerabilities, named Clear. In particular, Clear employs a contrastive learning (CL) model to capture the fine-grained correlation information among contracts and generates correlation labels based on the relationships between contracts to guide the training process of the CL model. Finally, it combines the correlation and the semantic information of the contract to detect SCVs. Through an empirical evaluation of a large-scale real-world dataset of over 40K smart contracts and compare 13 state-of-the-art baseline methods. We show that Clear achieves (1) optimal performance over all baseline methods; (2) 9.73%-39.99% higher F1-score than existing deep learning methods.
- Abstract(参考訳): 現在、ブロックチェーンのトランザクションセキュリティを脅かす主要な要因としてスマートコントラクト脆弱性(SCV)が出現している。
既存の最先端の手法は、この脅威を軽減するためにディープラーニングに依存している。
それぞれの入力コントラクトを独立したエンティティとして扱い、それをディープラーニングモデルに入力して、脆弱性ラベルを適合させることで脆弱性パターンを学習する。
同じタイプの契約と異なるタイプの契約の違いの共通点を考えるのに失敗し、契約間の相関を無視するのは残念です。
その結果、これらの手法の性能は所望のレベルに届かなかった。
この問題に対処するために,スマートコントラクト脆弱性に対するコントラスト学習強化自動認識手法であるClearを提案する。
特にClearは、契約間のきめ細かい相関情報をキャプチャし、契約間の関係に基づいて相関ラベルを生成し、CLモデルのトレーニングプロセスを導くために、対照的な学習(CL)モデルを採用している。
最後に、契約の相関と意味情報を組み合わせてSCVを検出する。
40K以上のスマートコントラクトからなる大規模な実世界のデータセットの実証評価を通じて、13の最先端のベースラインメソッドを比較します。
そこで,Clearは(1)全てのベースライン法に対して最適な性能を示し,(2)9.73%-39.99%のF1スコアが既存のディープラーニング法よりも高い値を示した。
関連論文リスト
- Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching [53.05954114863596]
画像テキストマッチングのための新しいDeep Boosting Learning (DBL)アルゴリズムを提案する。
アンカーブランチは、まずデータプロパティに関する洞察を提供するために訓練される。
ターゲットブランチは、一致したサンプルと未一致のサンプルとの相対距離をさらに拡大するために、より適応的なマージン制約を同時に課される。
論文 参考訳(メタデータ) (2024-04-28T08:44:28Z) - Blockchain Smart Contract Threat Detection Technology Based on Symbolic
Execution [0.0]
永続性の脆弱性は隠蔽され複雑であり、スマートコントラクトに大きな脅威をもたらす。
本稿では,シンボル実行に基づくスマートコントラクト脅威検出技術を提案する。
実験の結果,本手法は検出効率と精度の両方を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-12-24T03:27:03Z) - JointMatch: A Unified Approach for Diverse and Collaborative
Pseudo-Labeling to Semi-Supervised Text Classification [65.268245109828]
半教師付きテキスト分類(SSTC)は、ラベルのないデータを活用する能力によって注目を集めている。
擬似ラベルに基づく既存のアプローチは、擬似ラベルバイアスと誤り蓄積の問題に悩まされる。
我々は、最近の半教師付き学習からアイデアを統一することでこれらの課題に対処する、SSTCの総合的なアプローチであるJointMatchを提案する。
論文 参考訳(メタデータ) (2023-10-23T05:43:35Z) - Two Timin': Repairing Smart Contracts With A Two-Layered Approach [3.2154249558826846]
本稿では,スマートコントラクトの分類と修復のための新しい2層フレームワークを提案する。
Slitherの脆弱性レポートはソースコードと組み合わせて、トレーニング済みのRandomForestClassifier(RFC)とLarge Language Models(LLM)に渡される。
実験は、微調整および急速駆動LLMの有効性を実証した。
論文 参考訳(メタデータ) (2023-09-14T16:37:23Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Pre-deployment Analysis of Smart Contracts -- A Survey [0.27195102129095]
本稿では,スマートコントラクトの脆弱性と方法に関する文献を体系的にレビューする。
具体的には、スマートコントラクトの脆弱性とメソッドを、それらが対処するプロパティによって列挙し分類します。
異なる手法の強みに関するいくつかのパターンがこの分類プロセスを通して現れる。
論文 参考訳(メタデータ) (2023-01-15T12:36:56Z) - A Bytecode-based Approach for Smart Contract Classification [10.483992071557195]
ブロックチェーンプラットフォームにデプロイされるスマートコントラクトの数は指数関数的に増えているため、ユーザは手動のスクリーニングによって望ましいサービスを見つけることが難しくなっている。
スマートコントラクト分類に関する最近の研究は、契約ソースコードに基づく自然言語処理(NLP)ソリューションに焦点を当てている。
本稿では,これらの問題を解決するために,ソースコードの代わりにコントラクトバイトコードの特徴に基づく分類モデルを提案する。
論文 参考訳(メタデータ) (2021-05-31T03:00:29Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z) - Multi-Class classification of vulnerabilities in Smart Contracts using
AWD-LSTM, with pre-trained encoder inspired from natural language processing [0.0]
OYENTEやMAIANといったシンボリックツールは、スマートコントラクトの脆弱性予測に一般的に使用される。
LSTM の変種である AWD-LSTM (AWD-LSTM) を用いて分類を行った。
重み付き平均Fbetaスコアは90.0%に達した。
論文 参考訳(メタデータ) (2020-03-21T20:48:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。