論文の概要: Pre-deployment Analysis of Smart Contracts -- A Survey
- arxiv url: http://arxiv.org/abs/2301.06079v3
- Date: Fri, 30 Jun 2023 13:39:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 13:37:26.182036
- Title: Pre-deployment Analysis of Smart Contracts -- A Survey
- Title(参考訳): スマートコントラクトのデプロイメント前分析 - 調査
- Authors: Sundas Munir and Walid Taha
- Abstract要約: 本稿では,スマートコントラクトの脆弱性と方法に関する文献を体系的にレビューする。
具体的には、スマートコントラクトの脆弱性とメソッドを、それらが対処するプロパティによって列挙し分類します。
異なる手法の強みに関するいくつかのパターンがこの分類プロセスを通して現れる。
- 参考スコア(独自算出の注目度): 0.27195102129095
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Smart contracts are programs that execute transactions involving independent
parties and cryptocurrencies. As programs, smart contracts are susceptible to a
wide range of errors and vulnerabilities. Such vulnerabilities can result in
significant losses. Furthermore, by design, smart contract transactions are
irreversible. This creates a need for methods to ensure the correctness and
security of contracts pre-deployment. Recently there has been substantial
research into such methods. The sheer volume of this research makes
articulating state-of-the-art a substantial undertaking. To address this
challenge, we present a systematic review of the literature. A key feature of
our presentation is to factor out the relationship between vulnerabilities and
methods through properties. Specifically, we enumerate and classify smart
contract vulnerabilities and methods by the properties they address. The
methods considered include static analysis as well as dynamic analysis methods
and machine learning algorithms that analyze smart contracts before deployment.
Several patterns about the strengths of different methods emerge through this
classification process.
- Abstract(参考訳): スマートコントラクトは、独立したパーティや暗号通貨を含むトランザクションを実行するプログラムである。
プログラムとして、スマートコントラクトは幅広いエラーや脆弱性に影響を受けやすい。
このような脆弱性は大きな損失をもたらす可能性がある。
さらに、設計上、スマートコントラクトトランザクションは不可逆である。
これにより、デプロイ前のコントラクトの正確性とセキュリティを確保するためのメソッドの必要性が生じます。
近年,このような研究が盛んに行われている。
この研究の膨大なボリュームは、最先端の表現を相当な仕事にしている。
この課題に対処するため,文献の体系的なレビューを行う。
このプレゼンテーションの重要な特徴は、プロパティを通じて脆弱性とメソッドの関係を分解することです。
具体的には、スマートコントラクトの脆弱性とメソッドを、対処するプロパティによって列挙し、分類します。
検討された手法には、静的解析と動的解析方法、デプロイメント前にスマートコントラクトを分析する機械学習アルゴリズムが含まれる。
異なる手法の強みに関するいくつかのパターンがこの分類プロセスを通して現れる。
関連論文リスト
- Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
スマートコントラクトに対する機械学習の脆弱性検出における技術の現状を分析する。
スマートコントラクトにおける脆弱性検出の精度,スコープ,効率を高めるためのベストプラクティスについて議論する。
論文 参考訳(メタデータ) (2024-07-26T10:09:44Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
本稿では,契約設計によるオンライン学習問題において,利害関係者の経済的利益を整合させる理論的枠組みを提案する。
計画問題に対して、遠目エージェントに対する最適契約を決定するための効率的な動的プログラミングアルゴリズムを設計する。
学習問題に対して,契約の堅牢な設計から探索と搾取のバランスに至るまでの課題を解き放つために,非回帰学習アルゴリズムの汎用設計を導入する。
論文 参考訳(メタデータ) (2024-07-01T16:53:00Z) - Soley: Identification and Automated Detection of Logic Vulnerabilities in Ethereum Smart Contracts Using Large Language Models [1.081463830315253]
GitHubのコード変更から抽出された実世界のスマートコントラクトのロジック脆弱性を実証的に調査する。
本稿では,スマートコントラクトにおける論理的脆弱性の自動検出手法であるSoleyを紹介する。
スマートコントラクト開発者が実際のシナリオでこれらの脆弱性に対処するために使用する緩和戦略について検討する。
論文 参考訳(メタデータ) (2024-06-24T00:15:18Z) - Improving Smart Contract Security with Contrastive Learning-based Vulnerability Detection [8.121484960948303]
スマートコントラクト脆弱性に対するコントラスト学習強化型自動認識手法であるClearを提案する。
特にClearは、契約間のきめ細かい相関情報をキャプチャするために、対照的な学習(CL)モデルを採用している。
その結果,既存のディープラーニング手法よりも9.73%-39.99%高いF1スコアが得られることがわかった。
論文 参考訳(メタデータ) (2024-04-27T09:13:25Z) - Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey [0.6554326244334866]
本稿では,開発者がセキュアなスマート技術を開発するのを支援することを目的とした,文献レビューと実験報告を組み合わせる。
頻繁な脆弱性とそれに対応する緩和ソリューションのリストを提供する。
サンプルのスマートコントラクト上でそれらを実行し、テストすることで、コミュニティが最も広く使用しているツールを評価します。
論文 参考訳(メタデータ) (2024-03-28T19:36:53Z) - Fixing Smart Contract Vulnerabilities: A Comparative Analysis of
Literature and Developer's Practices [6.09162202256218]
文献で見られるような脆弱性の修正をガイドラインとして挙げる。
開発者がこれらのガイドラインにどの程度準拠しているか、あるいは他の実行可能な共通ソリューションがあるのか、それらが何であるかは明らかではない。
本研究の目的は,開発者が既存のガイドラインを遵守することに関連する知識ギャップを埋めることと,セキュリティ脆弱性に対する新たな,実行可能なソリューションを提案することである。
論文 参考訳(メタデータ) (2024-03-12T09:55:54Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
大規模言語モデルは、敵の迅速な攻撃に影響を受けやすい。
この脆弱性は、LLMの堅牢性と信頼性に関する重要な懸念を浮き彫りにしている。
トークンレベルで敵のプロンプトを検出するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T03:17:21Z) - Formally Verifying a Real World Smart Contract [52.30656867727018]
われわれは、Solidityの最新バージョンで書かれた現実世界のスマートコントラクトを正式に検証できるツールを検索する。
本稿では,最近のSolidityで書かれた実世界のスマートコントラクトを正式に検証できるツールについて紹介する。
論文 参考訳(メタデータ) (2023-07-05T14:30:21Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
従来のスマートコントラクトの脆弱性検出方法は、専門家の規則に大きく依存している。
最近のディープラーニングアプローチはこの問題を軽減するが、有用な専門家の知識をエンコードすることができない。
ソースコードから専門家パターンを抽出する自動ツールを開発する。
次に、深いグラフの特徴を抽出するために、コードをセマンティックグラフにキャストします。
論文 参考訳(メタデータ) (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。