A Formal Specification of a Data Model for Malaria Surveillance in the Developing World
- URL: http://arxiv.org/abs/2404.17859v1
- Date: Sat, 27 Apr 2024 10:22:28 GMT
- Title: A Formal Specification of a Data Model for Malaria Surveillance in the Developing World
- Authors: Emmanuel Tuyishimire,
- Abstract summary: The world is convinced that it is imperative to digitize the diagnosis of long standing diseases such as malaria for more efficient treatment and control.
We propose, in this paper, the architecture of a digital data collection system and how it is used to gather data for malaria awareness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The fourth Industrial Revolution(4IR), together with the COVID-19 pandemic have made a loud call for digitizing diagnosis processes. The world is now convinced that it is imperative to digitize the diagnosis of long standing diseases such as malaria for more efficient treatment and control. It has been seen that malaria control would benefit a lot from digitizing its diagnosis processes such as data gathering. We propose, in this paper, the architecture of a digital data collection system and how it is used to gather data for malaria awareness. The system is formally specified using Z notation, and based on the capability of the system, possible malaria determinants are defined and their retrieving mechanisms are discussed.
Related papers
- MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot [47.77948063906033]
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records.
This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain.
Tests show MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates.
arXiv Detail & Related papers (2025-02-06T12:27:35Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.
Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.
We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
Compartmental epidemiological models categorize individuals based on their disease status.
We propose an ABM architecture that combines an adapted SEIRD model with a decision-making model for citizens.
We illustrate the designed model by examining the progression of SARS-CoV-2 infections in A Coruna, Spain.
arXiv Detail & Related papers (2023-07-28T08:01:05Z) - Automatic Coding at Scale: Design and Deployment of a Nationwide System
for Normalizing Referrals in the Chilean Public Healthcare System [0.0]
We propose a two-step system for automatically coding diseases in referrals from the Chilean public healthcare system.
Specifically, our model uses a state-of-the-art NER model for recognizing disease mentions and a search engine system based on for assigning the most relevant codes associated with these disease mentions.
Our system obtained a MAP score of 0.63 for the subcategory level and 0.83 for the category level, close to the best-performing models in the literature.
arXiv Detail & Related papers (2023-07-09T16:19:35Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
arXiv Detail & Related papers (2022-05-12T08:59:57Z) - "My nose is running.""Are you also coughing?": Building A Medical
Diagnosis Agent with Interpretable Inquiry Logics [80.55587329326046]
We propose a more interpretable decision process to implement the dialogue manager of DSMD.
We devise a model with highly transparent components to conduct the inference.
Experiments show that our method obtains 7.7%, 10.0%, 3.0% absolute improvement in diagnosis accuracy.
arXiv Detail & Related papers (2022-04-29T09:02:23Z) - Coupled and Uncoupled Dynamic Mode Decomposition in Multi-Compartmental
Systems with Applications to Epidemiological and Additive Manufacturing
Problems [58.720142291102135]
We show that Dynamic Decomposition (DMD) may be a powerful tool when applied to nonlinear problems.
In particular, we show interesting numerical applications to a continuous delayed-SIRD model for Covid-19.
arXiv Detail & Related papers (2021-10-12T21:42:14Z) - End-to-end Malaria Diagnosis and 3D Cell Rendering with Deep Learning [0.0]
Malaria is a parasitic infection that poses a significant burden on global health.
It kills one child every 30 seconds and over one million people annually.
The current gold standard for diagnosing malaria requires microscopes, reagents, and other equipment that most patients of low socioeconomic brackets do not have access to.
arXiv Detail & Related papers (2021-07-08T08:13:11Z) - Malaria Detection and Classificaiton [0.38233569758620056]
Malaria is a disease of global concern according to the World Health Organization.
In this work, we put forward a framework for diagnosis of Malaria.
We adopt a two layer approach, where we detect infected cells using a Faster-RCNN in the first layer, crop them out, and feed the cropped cells to a seperate neural network for classification.
arXiv Detail & Related papers (2020-11-29T10:04:01Z) - A Deep Learning Pipeline for Patient Diagnosis Prediction Using
Electronic Health Records [0.5672132510411464]
We develop and publish a Python package to transform public health dataset into easy to access universal format.
We propose two novel model architectures to predict multiple diagnoses simultaneously.
Both models can predict multiple diagnoses simultaneously with high accuracy.
arXiv Detail & Related papers (2020-06-23T14:58:58Z) - MOSQUITO-NET: A deep learning based CADx system for malaria diagnosis
along with model interpretation using GradCam and class activation maps [9.01199960262149]
Malaria is one of the deadliest diseases in today world which causes thousands of deaths per year.
The parasites responsible for malaria are scientifically known as Plasmodium which infects the red blood cells in human beings.
The diagnosis of malaria requires identification and manual counting of parasitized cells by medical practitioners in microscopic blood smears.
arXiv Detail & Related papers (2020-06-17T13:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.