論文の概要: BoostRad: Enhancing Object Detection by Boosting Radar Reflections
- arxiv url: http://arxiv.org/abs/2404.17861v1
- Date: Sat, 27 Apr 2024 10:40:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 19:01:27.393693
- Title: BoostRad: Enhancing Object Detection by Boosting Radar Reflections
- Title(参考訳): BoostRad: レーダー反射の増強による物体検出の強化
- Authors: Yuval Haitman, Oded Bialer,
- Abstract要約: 自動車用レーダーは自律走行システムにおいて重要な役割を担っている。
レーダー検出の主な課題は、レーダー画像のぼかしや乱れを引き起こす角領域におけるレーダーの広角展開関数(PSF)である。
ブースティングレーダ反射(BoostRad)という代替手法を提案する。
- 参考スコア(独自算出の注目度): 6.0158981171030685
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automotive radars have an important role in autonomous driving systems. The main challenge in automotive radar detection is the radar's wide point spread function (PSF) in the angular domain that causes blurriness and clutter in the radar image. Numerous studies suggest employing an 'end-to-end' learning strategy using a Deep Neural Network (DNN) to directly detect objects from radar images. This approach implicitly addresses the PSF's impact on objects of interest. In this paper, we propose an alternative approach, which we term "Boosting Radar Reflections" (BoostRad). In BoostRad, a first DNN is trained to narrow the PSF for all the reflection points in the scene. The output of the first DNN is a boosted reflection image with higher resolution and reduced clutter, resulting in a sharper and cleaner image. Subsequently, a second DNN is employed to detect objects within the boosted reflection image. We develop a novel method for training the boosting DNN that incorporates domain knowledge of radar's PSF characteristics. BoostRad's performance is evaluated using the RADDet and CARRADA datasets, revealing its superiority over reference methods.
- Abstract(参考訳): 自動車用レーダーは自律走行システムにおいて重要な役割を担っている。
レーダー検出の主な課題は、レーダー画像のぼかしや乱れを引き起こす角領域におけるレーダーの広角展開関数(PSF)である。
多くの研究は、レーダー画像から直接物体を検出するためにディープニューラルネットワーク(DNN)を用いた「エンドツーエンド」学習戦略を採用することを示唆している。
このアプローチは、関心の対象に対するPSFの影響を暗黙的に解決する。
本稿では,Boosting Radar Reflections(BoostRad)という代替手法を提案する。
BoostRadでは、シーン内のすべてのリフレクションポイントに対して、最初のDNNがPSFを狭めるように訓練されている。
第1のDNNの出力は、高解像度でクラッタの少ない高解像度の反射像であり、よりシャープでクリーンな画像となる。
その後、第2のDNNを用いて、ブーストされた反射画像内の物体を検出する。
本研究では,レーダのPSF特性のドメイン知識を取り入れた高速化DNNの訓練手法を開発した。
BoostRadのパフォーマンスはRADDetとCARRADAデータセットを使用して評価され、参照メソッドよりも優れていることが判明した。
関連論文リスト
- Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - The Radar Ghost Dataset -- An Evaluation of Ghost Objects in Automotive Radar Data [12.653873936535149]
典型的な交通シナリオでは、レーダーの放射された信号に対して、さらに多くの表面が平坦に見える。
この結果、レーダー信号のマルチパス反射、いわゆるゴースト検出が生じる。
各種のゴースト検出のための詳細な手動アノテーションを用いたデータセットを提案する。
論文 参考訳(メタデータ) (2024-04-01T19:20:32Z) - MVFAN: Multi-View Feature Assisted Network for 4D Radar Object Detection [15.925365473140479]
4Dレーダーは、悪天候下での弾力性と費用対効果が認められている。
LiDARやカメラとは異なり、レーダーは厳しい気象条件で損傷を受けないままである。
本稿では,自律走行車のためのレーダーによる3次元物体検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-25T06:10:07Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
レーダー中心のデータセットは、レーダー知覚のためのディープラーニング技術の開発にはあまり注目されていない。
本稿では,視覚深層学習における最先端技術を活用したトランスフォーマーモデルRadarFormerを提案する。
また、チャネルチャープ時マージモジュールを導入し、精度を損なうことなく、モデルのサイズと複雑さを10倍以上に削減する。
論文 参考訳(メタデータ) (2023-04-17T17:07:35Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
本稿では,自動車のRADARセンサを用いて動的障害物や乾燥可能な自由空間を検出するディープニューラルネットワーク(DNN)を提案する。
ネットワークは組み込みGPU上でリアルタイムよりも高速に動作し、地理的領域にわたって優れた一般化を示す。
論文 参考訳(メタデータ) (2022-09-29T01:30:34Z) - Deep Instance Segmentation with High-Resolution Automotive Radar [2.167586397005864]
本稿では,レーダ検出点を用いた2つの効率的な分割法を提案する。
1つは、PointNet++フレームワークを使用してエンドツーエンドのディープラーニング駆動方式で実装されている。
もう一つは、セマンティック情報を用いたレーダー検出点のクラスタリングに基づいている。
論文 参考訳(メタデータ) (2021-10-05T01:18:27Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。