Unpaired Multi-view Clustering via Reliable View Guidance
- URL: http://arxiv.org/abs/2404.17894v1
- Date: Sat, 27 Apr 2024 13:03:57 GMT
- Title: Unpaired Multi-view Clustering via Reliable View Guidance
- Authors: Like Xin, Wanqi Yang, Lei Wang, Ming Yang,
- Abstract summary: This paper focuses on unpaired multi-view clustering (UMC), a challenging problem where paired observed samples are unavailable across multiple views.
We propose Reliable view Guidance with one reliable view (RG-UMC) and multiple reliable views (RGs-UMC) for UMC.
Both RG-UMC and RGs-UMC outperform the best state-of-the-art method by an average of 24.14% and 29.42% in NMI, respectively.
- Score: 7.441454668534061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on unpaired multi-view clustering (UMC), a challenging problem where paired observed samples are unavailable across multiple views. The goal is to perform effective joint clustering using the unpaired observed samples in all views. In incomplete multi-view clustering, existing methods typically rely on sample pairing between views to capture their complementary. However, that is not applicable in the case of UMC. Hence, we aim to extract the consistent cluster structure across views. In UMC, two challenging issues arise: uncertain cluster structure due to lack of label and uncertain pairing relationship due to absence of paired samples. We assume that the view with a good cluster structure is the reliable view, which acts as a supervisor to guide the clustering of the other views. With the guidance of reliable views, a more certain cluster structure of these views is obtained while achieving alignment between reliable views and other views. Then we propose Reliable view Guidance with one reliable view (RG-UMC) and multiple reliable views (RGs-UMC) for UMC. Specifically, we design alignment modules with one reliable view and multiple reliable views, respectively, to adaptively guide the optimization process. Also, we utilize the compactness module to enhance the relationship of samples within the same cluster. Meanwhile, an orthogonal constraint is applied to latent representation to obtain discriminate features. Extensive experiments show that both RG-UMC and RGs-UMC outperform the best state-of-the-art method by an average of 24.14\% and 29.42\% in NMI, respectively.
Related papers
- Multi-level Reliable Guidance for Unpaired Multi-view Clustering [7.441454668534061]
We propose a method called Multi-level Reliable Guidance for UMC (MRG-UMC)
MRG-UMC leverages multi-level clustering to aid in learning a trustworthy cluster structure across inner-view, cross-view, and common-view.
In cross-view learning, reliable view guidance enhances the confidence of the cluster structures in other views.
arXiv Detail & Related papers (2024-07-01T12:49:55Z) - CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
We propose a novel incomplete multi-view clustering network, called Cognitive Deep Incomplete Multi-view Clustering Network (CDIMC-net)
It captures the high-level features and local structure of each view by incorporating the view-specific deep encoders and graph embedding strategy into a framework.
Based on the human cognition, i.e., learning from easy to hard, it introduces a self-paced strategy to select the most confident samples for model training.
arXiv Detail & Related papers (2024-03-28T15:45:03Z) - Hierarchical Mutual Information Analysis: Towards Multi-view Clustering
in The Wild [9.380271109354474]
This work proposes a deep MVC framework where data recovery and alignment are fused in a hierarchically consistent way to maximize the mutual information among different views.
To the best of our knowledge, this could be the first successful attempt to handle the missing and unaligned data problem separately with different learning paradigms.
arXiv Detail & Related papers (2023-10-28T06:43:57Z) - Scalable Incomplete Multi-View Clustering with Structure Alignment [71.62781659121092]
In this paper, we propose a novel incomplete anchor graph learning framework.
We construct the view-specific anchor graph to capture the complementary information from different views.
The time and space complexity of the proposed SIMVC-SA is proven to be linearly correlated with the number of samples.
arXiv Detail & Related papers (2023-08-31T08:30:26Z) - DealMVC: Dual Contrastive Calibration for Multi-view Clustering [78.54355167448614]
We propose a novel Dual contrastive calibration network for Multi-View Clustering (DealMVC)
We first design a fusion mechanism to obtain a global cross-view feature. Then, a global contrastive calibration loss is proposed by aligning the view feature similarity graph and the high-confidence pseudo-label graph.
During the training procedure, the interacted cross-view feature is jointly optimized at both local and global levels.
arXiv Detail & Related papers (2023-08-17T14:14:28Z) - Unpaired Multi-View Graph Clustering with Cross-View Structure Matching [39.310384044597065]
Most existing MVC methods assume that multi-view data are fully paired, which means that the mappings of all corresponding samples between views are pre-defined or given in advance.
The data correspondence is often incomplete in real-world applications due to data corruption or sensor differences.
We propose a novel parameter-free graph clustering framework termed Unpaired Multi-view Graph Clustering framework with Cross-View Structure Matching.
arXiv Detail & Related papers (2023-07-07T09:29:44Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
We propose a Cross-view Partial Sample and Prototype Alignment Network (CPSPAN) for Deep Incomplete Multi-view Clustering.
Unlike existing contrastive-based methods, we adopt pair-observed data alignment as 'proxy supervised signals' to guide instance-to-instance correspondence construction.
arXiv Detail & Related papers (2023-03-28T02:31:57Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.