IterMask3D: Unsupervised Anomaly Detection and Segmentation with Test-Time Iterative Mask Refinement in 3D Brain MR
- URL: http://arxiv.org/abs/2504.04911v1
- Date: Mon, 07 Apr 2025 10:41:23 GMT
- Title: IterMask3D: Unsupervised Anomaly Detection and Segmentation with Test-Time Iterative Mask Refinement in 3D Brain MR
- Authors: Ziyun Liang, Xiaoqing Guo, Wentian Xu, Yasin Ibrahim, Natalie Voets, Pieter M Pretorius, J. Alison Noble, Konstantinos Kamnitsas,
- Abstract summary: Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as 'normal'<n> prevailing methods corrupt the images and train a model to reconstruct them.<n>We propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI.
- Score: 10.763588041592703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as 'normal'. In the testing phase, they identify patterns that deviate from this normal distribution as 'anomalies'. To learn the `normal' distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned 'normal' distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks 'normal' areas to the model, whose information further guides reconstruction of 'normal' patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method.
Related papers
- LADMIM: Logical Anomaly Detection with Masked Image Modeling in Discrete Latent Space [0.0]
Masked image modeling is a self-supervised learning technique that predicts the feature representation of masked regions in an image.
We propose a novel approach that leverages the characteristics of MIM to detect logical anomalies effectively.
We evaluate the proposed method on the MVTecLOCO dataset, achieving an average AUC of 0.867.
arXiv Detail & Related papers (2024-10-14T07:50:56Z) - IterMask2: Iterative Unsupervised Anomaly Segmentation via Spatial and Frequency Masking for Brain Lesions in MRI [13.403122193463348]
Unsupervised anomaly segmentation approaches to pathology segmentation train a model on images of healthy subjects.
They aim to segment any pathologies in new images as 'anomalies', as they exhibit patterns that deviate from those in 'normal' training data.
We propose a novel iterative spatial mask-refining strategy IterMask2 to alleviate this problem.
arXiv Detail & Related papers (2024-06-04T15:39:49Z) - Unsupervised Anomaly Detection via Masked Diffusion Posterior Sampling [8.887775968482208]
diffusion models have shown promising applications for anomaly detection due to their powerful generative ability.
This paper proposes a novel and highly-interpretable method named Masked Diffusion Posterior Sampling (MDPS)
MDPS can achieve state-of-the-art performance in normal image reconstruction quality as well as anomaly detection and localization.
arXiv Detail & Related papers (2024-04-27T13:13:27Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Self-Supervised Masking for Unsupervised Anomaly Detection and
Localization [22.671913403500728]
We propose a self-supervised learning approach through random masking and then restoring, named Self-Supervised Masking (SSM) for unsupervised anomaly detection and localization.
SSM not only enhances the training of the inpainting network but also leads to great improvement in the efficiency of mask prediction at inference.
To improve the efficiency and effectiveness of anomaly detection and localization at inference, we propose a novel progressive mask refinement approach.
arXiv Detail & Related papers (2022-05-13T11:42:06Z) - Unsupervised Anomaly Detection in Medical Images with a Memory-augmented
Multi-level Cross-attentional Masked Autoencoder [33.5760501931736]
Unsupervised anomaly detection (UAD) aims to find anomalous images by optimising a detector using a training set that contains only normal images.
UAD approaches can be based on reconstruction methods, self-supervised approaches, and Imagenet pre-trained models.
We introduce a new reconstruction-based UAD approach that addresses the low reconstruction error issue for anomalous images.
arXiv Detail & Related papers (2022-03-22T13:32:42Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.