Reliable Student: Addressing Noise in Semi-Supervised 3D Object Detection
- URL: http://arxiv.org/abs/2404.17910v1
- Date: Sat, 27 Apr 2024 13:38:45 GMT
- Title: Reliable Student: Addressing Noise in Semi-Supervised 3D Object Detection
- Authors: Farzad Nozarian, Shashank Agarwal, Farzaneh Rezaeianaran, Danish Shahzad, Atanas Poibrenski, Christian Müller, Philipp Slusallek,
- Abstract summary: Semi-supervised 3D object detection can benefit from the promising pseudo-labeling technique when labeled data is limited.
Recent approaches have overlooked the impact of noisy pseudo-labels during training.
We propose the Reliable Student framework, which incorporates two complementary approaches to mitigate errors.
- Score: 3.6035734305775518
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised 3D object detection can benefit from the promising pseudo-labeling technique when labeled data is limited. However, recent approaches have overlooked the impact of noisy pseudo-labels during training, despite efforts to enhance pseudo-label quality through confidence-based filtering. In this paper, we examine the impact of noisy pseudo-labels on IoU-based target assignment and propose the Reliable Student framework, which incorporates two complementary approaches to mitigate errors. First, it involves a class-aware target assignment strategy that reduces false negative assignments in difficult classes. Second, it includes a reliability weighting strategy that suppresses false positive assignment errors while also addressing remaining false negatives from the first step. The reliability weights are determined by querying the teacher network for confidence scores of the student-generated proposals. Our work surpasses the previous state-of-the-art on KITTI 3D object detection benchmark on point clouds in the semi-supervised setting. On 1% labeled data, our approach achieves a 6.2% AP improvement for the pedestrian class, despite having only 37 labeled samples available. The improvements become significant for the 2% setting, achieving 6.0% AP and 5.7% AP improvements for the pedestrian and cyclist classes, respectively.
Related papers
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approaches to semi-supervised learning adopt a teacher-student framework.
We leverage pre-trained motion-forecasting models to generate object trajectories on pseudo-labeled data.
Our approach improves pseudo-label quality in two distinct manners.
arXiv Detail & Related papers (2024-09-17T05:35:00Z) - Adversarial Attacked Teacher for Unsupervised Domain Adaptive Object Detection [4.641733276587937]
Cutting-edge domain adaptive object detection methods use the teacher-student framework and domain adversarial learning to generate domain-invariant pseudo-labels for self-training.
We reveal that pseudo-labels vulnerable to adversarial attacks are more likely to be low-quality.
We propose a simple yet effective framework named Adversarial Attacked Teacher to improve the quality of pseudo-labels.
arXiv Detail & Related papers (2024-08-18T10:22:23Z) - Credible Teacher for Semi-Supervised Object Detection in Open Scene [106.25850299007674]
In Open Scene Semi-Supervised Object Detection (O-SSOD), unlabeled data may contain unknown objects not observed in the labeled data.
It is detrimental to the current methods that mainly rely on self-training, as more uncertainty leads to the lower localization and classification precision of pseudo labels.
We propose Credible Teacher, an end-to-end framework to prevent uncertain pseudo labels from misleading the model.
arXiv Detail & Related papers (2024-01-01T08:19:21Z) - Revisiting Class Imbalance for End-to-end Semi-Supervised Object
Detection [1.6249267147413524]
Semi-supervised object detection (SSOD) has made significant progress with the development of pseudo-label-based end-to-end methods.
Many methods face challenges due to class imbalance, which hinders the effectiveness of the pseudo-label generator.
In this paper, we examine the root causes of low-quality pseudo-labels and present novel learning mechanisms to improve the label generation quality.
arXiv Detail & Related papers (2023-06-04T06:01:53Z) - Delving into Probabilistic Uncertainty for Unsupervised Domain Adaptive
Person Re-Identification [54.174146346387204]
We propose an approach named probabilistic uncertainty guided progressive label refinery (P$2$LR) for domain adaptive person re-identification.
A quantitative criterion is established to measure the uncertainty of pseudo labels and facilitate the network training.
Our method outperforms the baseline by 6.5% mAP on the Duke2Market task, while surpassing the state-of-the-art method by 2.5% mAP on the Market2MSMT task.
arXiv Detail & Related papers (2021-12-28T07:40:12Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - Unbiased Teacher for Semi-Supervised Object Detection [50.0087227400306]
We revisit the Semi-Supervised Object Detection (SS-OD) and identify the pseudo-labeling bias issue in SS-OD.
We introduce Unbiased Teacher, a simple yet effective approach that jointly trains a student and a gradually progressing teacher in a mutually-beneficial manner.
arXiv Detail & Related papers (2021-02-18T17:02:57Z) - 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object
Detection [76.42897462051067]
3DIoUMatch is a novel semi-supervised method for 3D object detection applicable to both indoor and outdoor scenes.
We leverage a teacher-student mutual learning framework to propagate information from the labeled to the unlabeled train set in the form of pseudo-labels.
Our method consistently improves state-of-the-art methods on both ScanNet and SUN-RGBD benchmarks by significant margins under all label ratios.
arXiv Detail & Related papers (2020-12-08T11:06:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.