論文の概要: EvaNet: Elevation-Guided Flood Extent Mapping on Earth Imagery (Extended Version)
- arxiv url: http://arxiv.org/abs/2404.17917v3
- Date: Wed, 18 Sep 2024 02:26:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 23:13:20.308187
- Title: EvaNet: Elevation-Guided Flood Extent Mapping on Earth Imagery (Extended Version)
- Title(参考訳): EvaNet:Elevation-Guided Flood Extent Mapping on Earth Imagery (Extended Version)
- Authors: Mirza Tanzim Sami, Da Yan, Saugat Adhikari, Lyuheng Yuan, Jiao Han, Zhe Jiang, Jalal Khalil, Yang Zhou,
- Abstract要約: EvaNetはエンコーダ・デコーダアーキテクチャに基づく標高誘導セグメンテーションモデルである。
これは、洪水範囲マッピングのための既存のソリューションにおいて、U-Netの完全なドロップイン代替として機能する。
- 参考スコア(独自算出の注目度): 11.820388725641312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and timely mapping of flood extent from high-resolution satellite imagery plays a crucial role in disaster management such as damage assessment and relief activities. However, current state-of-the-art solutions are based on U-Net, which can-not segment the flood pixels accurately due to the ambiguous pixels (e.g., tree canopies, clouds) that prevent a direct judgement from only the spectral features. Thanks to the digital elevation model (DEM) data readily available from sources such as United States Geological Survey (USGS), this work explores the use of an elevation map to improve flood extent mapping. We propose, EvaNet, an elevation-guided segmentation model based on the encoder-decoder architecture with two novel techniques: (1) a loss function encoding the physical law of gravity that if a location is flooded (resp. dry), then its adjacent locations with a lower (resp. higher) elevation must also be flooded (resp. dry); (2) a new (de)convolution operation that integrates the elevation map by a location sensitive gating mechanism to regulate how much spectral features flow through adjacent layers. Extensive experiments show that EvaNet significantly outperforms the U-Net baselines, and works as a perfect drop-in replacement for U-Net in existing solutions to flood extent mapping.
- Abstract(参考訳): 高解像度衛星画像からの洪水範囲の正確なタイムリーマッピングは、被害評価や救援活動などの災害管理において重要な役割を担っている。
しかし、現在の最先端のソリューションはU-Netに基づいており、これは、スペクトルの特徴のみを直接判断することができない不明瞭なピクセル(例えば、ツリーキャノピー、雲)のために、フラッドピクセルを正確にセグメント化できない。
米国地質調査所 (USGS) などのソースから取得可能なデジタル標高モデル (DEM) により, 洪水範囲マッピングの改善を目的とした標高マップの活用が検討されている。
エンコーダ・デコーダアーキテクチャに基づく標高誘導セグメンテーションモデルであるEvaNetを提案する。(1) 重力の物理則を符号化した損失関数であり,(1) 位置が浸水(乾式)した場合,その位置が低い(乾式)位置も浸水(乾式)する必要がある。
大規模な実験により、EvaNetはU-Netベースラインを著しく上回り、洪水範囲マッピングの既存のソリューションにおけるU-Netの完全な代替として機能することが示された。
関連論文リスト
- Hi-Map: Hierarchical Factorized Radiance Field for High-Fidelity
Monocular Dense Mapping [51.739466714312805]
ニューラルラジアンス場(NeRF)に基づく新しいモノクリン高密度マッピング手法であるHi-Mapを導入する。
ハイマップは、RGB入力のみを用いた効率的かつ高忠実なマッピングを実現する能力において例外的である。
論文 参考訳(メタデータ) (2024-01-06T12:32:25Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
本稿では,"プレーン"特性を維持できる改良型DETR検出器を提案する。
特定の局所性制約を伴わずに、単一スケールの機能マップとグローバルなクロスアテンション計算を使用する。
マルチスケールな特徴マップと局所性制約の欠如を補うために,2つの単純な技術が平易な設計において驚くほど効果的であることを示す。
論文 参考訳(メタデータ) (2023-08-03T17:59:04Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
オーバーウォーターシーンで画像をデフォグするための先行マップガイドサイクロン (PG-CycleGAN) を提案する。
提案手法は,最先端の教師付き,半教師付き,非教師付きデグジングアプローチより優れている。
論文 参考訳(メタデータ) (2022-12-23T03:00:28Z) - Cross-Geography Generalization of Machine Learning Methods for
Classification of Flooded Regions in Aerial Images [3.9921541182631253]
本研究は,UAV空中画像中の浸水領域を特定するための2つのアプローチを提案する。
最初のアプローチは、テクスチャベースの教師なしセグメンテーションを使用して、浸水した地域を検出する。
2つ目は、テクスチャ機能に人工ニューラルネットワークを使用して、画像が浸水して浮かばないものとして分類する。
論文 参考訳(メタデータ) (2022-10-04T13:11:44Z) - Towards Daily High-resolution Inundation Observations using Deep
Learning and EO [0.0]
絶え間ないリモートセンシングは、シンオプティクスの洪水モニタリングに費用対効果のあるソリューションを提供する。
衛星は、現在進行中の洪水イベントをカバーする際に、タイムリーな浸水情報を提供するが、様々なスケールで洪水の進化を監視する能力に関して、その解像度によって制限される。
空間分解能と低時間分解能を持つコペルニクス・センチネルのような衛星のデータと、NASA SMAPとGPMのミッションのデータは、日々の規模で高分解能の浸水を引き起こす可能性がある。
論文 参考訳(メタデータ) (2022-08-10T14:04:50Z) - Attentive Dual Stream Siamese U-net for Flood Detection on
Multi-temporal Sentinel-1 Data [0.0]
両時間SARによる洪水検知ネットワークを提案する。
提案するセグメンテーションネットワークは,2つのシームズエンコーダを用いたエンコーダ・デコーダアーキテクチャを備え,プレフロッド画像とポストフロッド画像の符号化を行う。
このネットワークは、既存の最先端(一時期)の洪水検出手法を6%のIOUで上回った。
論文 参考訳(メタデータ) (2022-04-20T10:56:39Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
バックプロパゲーション画像のサリエンシは、入力中の個々のピクセルのモデル中心の重要性を推定することにより、モデル予測を説明することを目的としている。
CAMERASは、外部の事前処理を必要とせずに、高忠実度バックプロパゲーション・サリエンシ・マップを計算できる手法である。
論文 参考訳(メタデータ) (2021-06-20T08:20:56Z) - H2O-Net: Self-Supervised Flood Segmentation via Adversarial Domain
Adaptation and Label Refinement [6.577064131678387]
H2O-Networkは、衛星や航空画像から洪水を分離する自己教師付きディープラーニング手法である。
H2O-Networkは、高解像度衛星画像におけるセマンティックセグメンテーションのドメイン適応ステップとして、水の存在と高い相関性を持つ信号を合成することを学ぶ。
H2O-Netは,衛星画像上での最先端セマンティックセマンティックセグメンテーション法を,それぞれ10%,12%の精度で,mIoUより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-11T18:35:03Z) - Flood Extent Mapping based on High Resolution Aerial Imagery and DEM: A
Hidden Markov Tree Approach [10.72081512622396]
本稿では,高分解能空中画像のケーススタディにより,提案した地理的隠れマルコフ木モデルを評価する。
2016年のハリケーン・マシューの洪水で、ノースカロライナ州グリムズランド市とキンストン市の近くで、3つのシーンが植林された洪水原で選ばれた。
その結果,提案した隠れマルコフ木モデルは,機械学習アルゴリズムのいくつかの状態よりも優れていた。
論文 参考訳(メタデータ) (2020-08-25T18:35:28Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。