Open-Set 3D Semantic Instance Maps for Vision Language Navigation -- O3D-SIM
- URL: http://arxiv.org/abs/2404.17922v1
- Date: Sat, 27 Apr 2024 14:20:46 GMT
- Title: Open-Set 3D Semantic Instance Maps for Vision Language Navigation -- O3D-SIM
- Authors: Laksh Nanwani, Kumaraditya Gupta, Aditya Mathur, Swayam Agrawal, A. H. Abdul Hafez, K. Madhava Krishna,
- Abstract summary: Humans excel at forming mental maps of their surroundings.
Having instance-level information and the semantic understanding of an environment helps significantly improve performance for language-guided tasks.
We extend this instance-level approach to 3D while increasing the pipeline's robustness.
- Score: 8.46789360111679
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Humans excel at forming mental maps of their surroundings, equipping them to understand object relationships and navigate based on language queries. Our previous work SI Maps [1] showed that having instance-level information and the semantic understanding of an environment helps significantly improve performance for language-guided tasks. We extend this instance-level approach to 3D while increasing the pipeline's robustness and improving quantitative and qualitative results. Our method leverages foundational models for object recognition, image segmentation, and feature extraction. We propose a representation that results in a 3D point cloud map with instance-level embeddings, which bring in the semantic understanding that natural language commands can query. Quantitatively, the work improves upon the success rate of language-guided tasks. At the same time, we qualitatively observe the ability to identify instances more clearly and leverage the foundational models and language and image-aligned embeddings to identify objects that, otherwise, a closed-set approach wouldn't be able to identify.
Related papers
- RefMask3D: Language-Guided Transformer for 3D Referring Segmentation [32.11635464720755]
RefMask3D aims to explore the comprehensive multi-modal feature interaction and understanding.
RefMask3D outperforms previous state-of-the-art method by a large margin of 3.16% mIoU on the challenging ScanRefer dataset.
arXiv Detail & Related papers (2024-07-25T17:58:03Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset.
This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories.
We propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for 3D scenes.
arXiv Detail & Related papers (2023-08-01T07:50:14Z) - DesCo: Learning Object Recognition with Rich Language Descriptions [93.8177229428617]
Recent development in vision-language approaches has instigated a paradigm shift in learning visual recognition models from language supervision.
We propose a new description-conditioned (DesCo) paradigm of learning object recognition models with rich language descriptions.
arXiv Detail & Related papers (2023-06-24T21:05:02Z) - Vision-Language Pre-training with Object Contrastive Learning for 3D
Scene Understanding [47.48443919164377]
A vision-language pre-training framework is proposed to transfer flexibly on 3D vision-language downstream tasks.
In this paper, we investigate three common tasks in semantic 3D scene understanding, and derive key insights into a pre-training model.
Experiments verify the excellent performance of the framework on three 3D vision-language tasks.
arXiv Detail & Related papers (2023-05-18T05:25:40Z) - Paparazzi: A Deep Dive into the Capabilities of Language and Vision
Models for Grounding Viewpoint Descriptions [4.026600887656479]
We investigate whether a state-of-the-art language and vision model, CLIP, is able to ground perspective descriptions of a 3D object.
We present an evaluation framework that uses a circling camera around a 3D object to generate images from different viewpoints.
We find that a pre-trained CLIP model performs poorly on most canonical views.
arXiv Detail & Related papers (2023-02-13T15:18:27Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
We propose to jointly embed the semantics in the natural language description of the knowledge triplets with their structure information.
Our method embeds knowledge graphs for the completion task via fine-tuning pre-trained language models.
Our experiments on a variety of knowledge graph benchmarks have demonstrated the state-of-the-art performance of our method.
arXiv Detail & Related papers (2022-09-19T02:41:02Z) - CLEAR: Improving Vision-Language Navigation with Cross-Lingual,
Environment-Agnostic Representations [98.30038910061894]
Vision-and-Language Navigation (VLN) tasks require an agent to navigate through the environment based on language instructions.
We propose CLEAR: Cross-Lingual and Environment-Agnostic Representations.
Our language and visual representations can be successfully transferred to the Room-to-Room and Cooperative Vision-and-Dialogue Navigation task.
arXiv Detail & Related papers (2022-07-05T17:38:59Z) - Semantic Exploration from Language Abstractions and Pretrained
Representations [23.02024937564099]
Effective exploration is a challenge in reinforcement learning (RL)
We define novelty using semantically meaningful state abstractions.
We evaluate vision-language representations, pretrained on natural image captioning datasets.
arXiv Detail & Related papers (2022-04-08T17:08:00Z) - Understanding Synonymous Referring Expressions via Contrastive Features [105.36814858748285]
We develop an end-to-end trainable framework to learn contrastive features on the image and object instance levels.
We conduct extensive experiments to evaluate the proposed algorithm on several benchmark datasets.
arXiv Detail & Related papers (2021-04-20T17:56:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.