論文の概要: Accurate and fast anomaly detection in industrial processes and IoT environments
- arxiv url: http://arxiv.org/abs/2404.17925v1
- Date: Sat, 27 Apr 2024 14:29:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 18:41:58.324012
- Title: Accurate and fast anomaly detection in industrial processes and IoT environments
- Title(参考訳): 産業プロセスとIoT環境における高精度かつ高速な異常検出
- Authors: Simone Tonini, Andrea Vandin, Francesca Chiaromonte, Daniele Licari, Fernando Barsacchi,
- Abstract要約: 本稿では,産業用およびIoT用環境であるSAnDにおける異常検出のための,新しい,シンプルで広く適用可能な半教師付き手順を提案する。
SAnDは5つのステップから構成されており、それぞれよく知られた統計ツール、すなわち、スムージングフィルタ、分散インフレーション係数、マハラノビス距離、しきい値選択アルゴリズム、特徴重要度技術を利用している。
我々は、SAnDは有効であり、広く適用可能であり、異常検出と実行時の両方において既存のアプローチより優れていると結論付けている。
- 参考スコア(独自算出の注目度): 38.674246480579946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel, simple and widely applicable semi-supervised procedure for anomaly detection in industrial and IoT environments, SAnD (Simple Anomaly Detection). SAnD comprises 5 steps, each leveraging well-known statistical tools, namely; smoothing filters, variance inflation factors, the Mahalanobis distance, threshold selection algorithms and feature importance techniques. To our knowledge, SAnD is the first procedure that integrates these tools to identify anomalies and help decipher their putative causes. We show how each step contributes to tackling technical challenges that practitioners face when detecting anomalies in industrial contexts, where signals can be highly multicollinear, have unknown distributions, and intertwine short-lived noise with the long(er)-lived actual anomalies. The development of SAnD was motivated by a concrete case study from our industrial partner, which we use here to show its effectiveness. We also evaluate the performance of SAnD by comparing it with a selection of semi-supervised methods on public datasets from the literature on anomaly detection. We conclude that SAnD is effective, broadly applicable, and outperforms existing approaches in both anomaly detection and runtime.
- Abstract(参考訳): 本稿では,産業用およびIoT用環境における異常検出のための新しい,シンプルで広く適用可能な半教師付き半教師付き手順であるSAnD(Simple Anomaly Detection)を提案する。
SAnDは5つのステップから構成されており、それぞれよく知られた統計ツール、すなわちスムージングフィルタ、分散インフレーション係数、マハラノビス距離、しきい値選択アルゴリズム、特徴重要度技術を利用している。
我々の知る限り、SAnDはこれらのツールを統合して異常を特定し、それらの原因を解読する最初の手順である。
各ステップが,信号の多重化,分布の不明化,長寿命の実異常による短寿命ノイズの相互干渉といった,産業的文脈における異常の検出において,実践者が直面する技術的課題への対処にどのように貢献するかを示す。
SAnDの開発は、我々の産業パートナーによる具体的なケーススタディによって動機づけられた。
また,SAnDの性能を,異常検出に関する文献からの公開データセット上での半教師付き手法の選択と比較することで評価した。
我々は、SAnDは有効であり、広く適用可能であり、異常検出と実行時の両方において既存のアプローチより優れていると結論付けている。
関連論文リスト
- Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection [63.93728560200819]
unsupervised out-of-distribution (U-OOD) は、未表示のin-distriion(ID)データのみに基づいて訓練された検出器でデータサンプルを識別することである。
近年の研究は、DGMに基づく様々な検出器を開発し、可能性を超えて移動している。
本研究では,各方向,特にポストホック前とデータセットエントロピー・ミューチュアルキャリブレーションの2つの手法を適用した。
実験の結果、結果が新しい最先端のU-OOD検出器になる可能性が示された。
論文 参考訳(メタデータ) (2024-09-05T02:58:13Z) - Self-Supervised Time-Series Anomaly Detection Using Learnable Data Augmentation [37.72735288760648]
本稿では,学習可能なデータ拡張に基づく時系列異常検出(LATAD)手法を提案する。
LATADは、比較学習を通じて時系列データから識別的特徴を抽出する。
その結果、LATADは最先端の異常検出評価に匹敵する、あるいは改善された性能を示した。
論文 参考訳(メタデータ) (2024-06-18T04:25:56Z) - Condition Monitoring with Incomplete Data: An Integrated Variational Autoencoder and Distance Metric Framework [2.7898966850590625]
本稿では,未確認データに対する故障検出と条件モニタリングのための新しい手法を提案する。
我々は変分オートエンコーダを用いて、以前に見られた新しい未知条件の確率分布をキャプチャする。
故障は、健康指標のしきい値を確立することで検出され、そのモデルが重大で見えない断層を高い精度で識別することができる。
論文 参考訳(メタデータ) (2024-04-08T22:20:23Z) - Anomaly Detection Based on Isolation Mechanisms: A Survey [13.449446806837422]
分離に基づく教師なし異常検出は、データの異常を識別するための新しく効果的なアプローチである。
本稿では,データ分割戦略,異常スコア関数,アルゴリズムの詳細など,最先端の分離に基づく異常検出手法について概説する。
論文 参考訳(メタデータ) (2024-03-16T04:29:21Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
本稿では,分散光ファイバーセンシング技術に基づくエネルギーパイプラインの放射状脅威推定手法を提案する。
本稿では,包括的信号特徴抽出のための連続的マルチビュー・マルチドメイン機能融合手法を提案する。
本研究では,事前学習モデルによる伝達学習の概念を取り入れ,認識精度と学習効率の両立を図る。
論文 参考訳(メタデータ) (2023-12-18T12:37:35Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
コントラスト学習と2D-Flowを組み合わせた自己教師付き異常検出手法を提案する。
本手法は,主流の教師なし手法と比較して,検出精度が向上し,モデルパラメータが減少し,推論速度が向上することを示す。
BTADデータセットでは,MVTecADデータセットでは画像レベルのAUROCが99.6%,BTADデータセットでは画像レベルのAUROCが96.8%であった。
論文 参考訳(メタデータ) (2023-11-12T10:07:03Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
本稿では, 産業環境における異常検出に対する弱い制御手法を提案する。
これらのアプローチでは、Digital Twinを使用して、機械の通常の動作をシミュレートするトレーニングデータセットを生成する。
提案手法の性能を,実世界のデータセットに応用した様々な最先端の異常検出アルゴリズムと比較した。
論文 参考訳(メタデータ) (2020-11-12T10:15:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。