The Performance of Sequential Deep Learning Models in Detecting Phishing Websites Using Contextual Features of URLs
- URL: http://arxiv.org/abs/2404.09802v1
- Date: Mon, 15 Apr 2024 13:58:22 GMT
- Title: The Performance of Sequential Deep Learning Models in Detecting Phishing Websites Using Contextual Features of URLs
- Authors: Saroj Gopali, Akbar S. Namin, Faranak Abri, Keith S. Jones,
- Abstract summary: This study focuses on the detection of phishing websites using deep learning models such as Multi-Head Attention, Temporal Convolutional Network (TCN), BI-LSTM, and LSTM.
Results demonstrate that Multi-Head Attention and BI-LSTM model outperform some other deep learning-based algorithms such as TCN and LSTM in producing better precision, recall, and F1-scores.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyber attacks continue to pose significant threats to individuals and organizations, stealing sensitive data such as personally identifiable information, financial information, and login credentials. Hence, detecting malicious websites before they cause any harm is critical to preventing fraud and monetary loss. To address the increasing number of phishing attacks, protective mechanisms must be highly responsive, adaptive, and scalable. Fortunately, advances in the field of machine learning, coupled with access to vast amounts of data, have led to the adoption of various deep learning models for timely detection of these cyber crimes. This study focuses on the detection of phishing websites using deep learning models such as Multi-Head Attention, Temporal Convolutional Network (TCN), BI-LSTM, and LSTM where URLs of the phishing websites are treated as a sequence. The results demonstrate that Multi-Head Attention and BI-LSTM model outperform some other deep learning-based algorithms such as TCN and LSTM in producing better precision, recall, and F1-scores.
Related papers
- Multimodal Large Language Models for Phishing Webpage Detection and Identification [29.291474807301594]
We study the efficacy of large language models (LLMs) in detecting phishing webpages.
Our system achieves a high detection rate at high precision.
It also provides interpretable evidence for the decisions.
arXiv Detail & Related papers (2024-08-12T06:36:08Z) - PhishNet: A Phishing Website Detection Tool using XGBoost [1.777434178384403]
PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning.
It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework.
arXiv Detail & Related papers (2024-06-29T21:31:13Z) - Leveraging LSTM and GAN for Modern Malware Detection [0.4799822253865054]
This paper proposes the utilization of the Deep Learning Model, LSTM networks, and GAN classifiers to amplify malware detection accuracy and speed.
The research outcomes come out with 98% accuracy that shows the efficiency of deep learning plays a decisive role in proactive cybersecurity defense.
arXiv Detail & Related papers (2024-05-07T14:57:24Z) - PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis [1.102674168371806]
Phishing URL identification is the best way to address the problem.
Various machine learning and deep learning methods have been proposed to automate the detection of phishing URLs.
We propose a 1D Convolutional Neural Network (CNN) and trained the model with extensive features and a substantial amount of data.
arXiv Detail & Related papers (2024-04-27T17:13:49Z) - Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation [29.72520866016839]
Source code vulnerability detection aims to identify inherent vulnerabilities to safeguard software systems from potential attacks.
Many prior studies overlook diverse vulnerability characteristics, simplifying the problem into a binary (0-1) classification task.
FGVulDet employs multiple classifiers to discern characteristics of various vulnerability types and combines their outputs to identify the specific type of vulnerability.
FGVulDet is trained on a large-scale dataset from GitHub, encompassing five different types of vulnerabilities.
arXiv Detail & Related papers (2024-04-15T09:10:52Z) - Do You Trust Your Model? Emerging Malware Threats in the Deep Learning
Ecosystem [37.650342256199096]
We introduce MaleficNet 2.0, a technique to embed self-extracting, self-executing malware in neural networks.
MaleficNet 2.0 injection technique is stealthy, does not degrade the performance of the model, and is robust against removal techniques.
We implement a proof-of-concept self-extracting neural network malware using MaleficNet 2.0, demonstrating the practicality of the attack against a widely adopted machine learning framework.
arXiv Detail & Related papers (2024-03-06T10:27:08Z) - AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized
Phishing URL Detection [0.32141666878560626]
This paper introduces a two-phase stack generalized model named AntiPhishStack, designed to detect phishing sites.
The model leverages the learning of URLs and character-level TF-IDF features symmetrically, enhancing its ability to combat emerging phishing threats.
Experimental validation on two benchmark datasets, comprising benign and phishing or malicious URLs, demonstrates the model's exceptional performance, achieving a notable 96.04% accuracy compared to existing studies.
arXiv Detail & Related papers (2024-01-17T03:44:27Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
Phishing, a well-known cyberattack, revolves around the creation of phishing webpages and the dissemination of corresponding URLs.
Various techniques are available for preemptively categorizing zero-day phishing URLs by distilling unique attributes and constructing predictive models.
This proposal delves into persistent challenges within phishing detection solutions, particularly concentrated on the preliminary phase of assembling comprehensive datasets.
We propose a potential solution in the form of a tool engineered to alleviate bias in ML models.
arXiv Detail & Related papers (2024-01-16T13:45:54Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
Device-type identification combined with data from vulnerability databases can pinpoint vulnerable IoT devices in a network.
We present and evaluate two deep learning approaches to the reliable IoT device-type identification.
arXiv Detail & Related papers (2021-02-16T14:49:34Z) - Security of Distributed Machine Learning: A Game-Theoretic Approach to
Design Secure DSVM [31.480769801354413]
This work aims to develop secure distributed algorithms to protect the learning from data poisoning and network attacks.
We establish a game-theoretic framework to capture the conflicting goals of a learner who uses distributed support vector machines (SVMs) and an attacker who is capable of modifying training data and labels.
The numerical results show that distributed SVM is prone to fail in different types of attacks, and their impact has a strong dependence on the network structure and attack capabilities.
arXiv Detail & Related papers (2020-03-08T18:54:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.