Machine Learning Techniques for Data Reduction of CFD Applications
- URL: http://arxiv.org/abs/2404.18063v1
- Date: Sun, 28 Apr 2024 04:01:09 GMT
- Title: Machine Learning Techniques for Data Reduction of CFD Applications
- Authors: Jaemoon Lee, Ki Sung Jung, Qian Gong, Xiao Li, Scott Klasky, Jacqueline Chen, Anand Rangarajan, Sanjay Ranka,
- Abstract summary: We present an approach called guaranteed block autoencoder that leverages Correlations for reducing scientific results.
It uses a multidimensional block of tensors (CFD) for both input and output.
- Score: 10.881548113461493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach called guaranteed block autoencoder that leverages Tensor Correlations (GBATC) for reducing the spatiotemporal data generated by computational fluid dynamics (CFD) and other scientific applications. It uses a multidimensional block of tensors (spanning in space and time) for both input and output, capturing the spatiotemporal and interspecies relationship within a tensor. The tensor consists of species that represent different elements in a CFD simulation. To guarantee the error bound of the reconstructed data, principal component analysis (PCA) is applied to the residual between the original and reconstructed data. This yields a basis matrix, which is then used to project the residual of each instance. The resulting coefficients are retained to enable accurate reconstruction. Experimental results demonstrate that our approach can deliver two orders of magnitude in reduction while still keeping the errors of primary data under scientifically acceptable bounds. Compared to reduction-based approaches based on SZ, our method achieves a substantially higher compression ratio for a given error bound or a better error for a given compression ratio.
Related papers
- Compression of Structured Data with Autoencoders: Provable Benefit of
Nonlinearities and Depth [83.15263499262824]
We prove that gradient descent converges to a solution that completely disregards the sparse structure of the input.
We show how to improve upon Gaussian performance for the compression of sparse data by adding a denoising function to a shallow architecture.
We validate our findings on image datasets, such as CIFAR-10 and MNIST.
arXiv Detail & Related papers (2024-02-07T16:32:29Z) - On the Size and Approximation Error of Distilled Sets [57.61696480305911]
We take a theoretical view on kernel ridge regression based methods of dataset distillation such as Kernel Inducing Points.
We prove that a small set of instances exists in the original input space such that its solution in the RFF space coincides with the solution of the original data.
A KRR solution can be generated using this distilled set of instances which gives an approximation towards the KRR solution optimized on the full input data.
arXiv Detail & Related papers (2023-05-23T14:37:43Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Fast Learnings of Coupled Nonnegative Tensor Decomposition Using Optimal Gradient and Low-rank Approximation [7.265645216663691]
We introduce a novel coupled nonnegative CANDECOMP/PARAFAC decomposition algorithm optimized by the alternating gradient method (CoNCPD-APG)
By integrating low-rank approximation with the proposed CoNCPD-APG method, the proposed algorithm can significantly decrease the computational burden without compromising decomposition quality.
arXiv Detail & Related papers (2023-02-10T08:49:36Z) - A Parameter-free Nonconvex Low-rank Tensor Completion Model for
Spatiotemporal Traffic Data Recovery [14.084532939272766]
Traffic data chronically suffer from missing corruption, leading to accuracy and utility reduction in subsequentITS applications.
The proposed method outperforms other methods in both missing corrupted data recovery.
arXiv Detail & Related papers (2022-09-28T02:29:34Z) - Fast and Provable Tensor Robust Principal Component Analysis via Scaled
Gradient Descent [30.299284742925852]
This paper tackles tensor robust principal component analysis (RPCA)
It aims to recover a low-rank tensor from its observations contaminated by sparse corruptions.
We show that the proposed algorithm achieves better and more scalable performance than state-of-the-art matrix and tensor RPCA algorithms.
arXiv Detail & Related papers (2022-06-18T04:01:32Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
We show that the dense correlation volume representation is redundant and accurate flow estimation can be achieved with only a fraction of elements in it.
Experiments show that our method can reduce computational cost and memory use significantly, while maintaining high accuracy.
arXiv Detail & Related papers (2021-04-05T21:44:00Z) - Orthogonal Features-based EEG Signal Denoising using Fractionally
Compressed AutoEncoder [16.889633963766858]
A fractional-based compressed auto-encoder architecture has been introduced to solve the problem of denoising electroencephalogram (EEG) signals.
The proposed architecture provides improved denoising results on the standard datasets when compared with the existing methods.
arXiv Detail & Related papers (2021-02-16T11:15:00Z) - A Unified Framework for Coupled Tensor Completion [42.19293115131073]
Coupled tensor decomposition reveals the joint data structure by incorporating priori knowledge that come from the latent coupled factors.
The TR has powerful expression ability and achieves success in some multi-dimensional data processing applications.
The proposed method is validated on numerical experiments on synthetic data, and experimental results on real-world data demonstrate its superiority over the state-of-the-art methods in terms of recovery accuracy.
arXiv Detail & Related papers (2020-01-09T02:15:46Z) - Learning Hybrid Representation by Robust Dictionary Learning in
Factorized Compressed Space [84.37923242430999]
We investigate the robust dictionary learning (DL) to discover the hybrid salient low-rank and sparse representation in a factorized compressed space.
A Joint Robust Factorization and Projective Dictionary Learning (J-RFDL) model is presented.
arXiv Detail & Related papers (2019-12-26T06:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.