Sparse Tensor PCA via Tensor Decomposition for Unsupervised Feature Selection
- URL: http://arxiv.org/abs/2407.16985v2
- Date: Mon, 24 Mar 2025 09:55:59 GMT
- Title: Sparse Tensor PCA via Tensor Decomposition for Unsupervised Feature Selection
- Authors: Junjing Zheng, Xinyu Zhang, Weidong Jiang, Xiangfeng Qiu, Mingjian Ren,
- Abstract summary: We introduce Decomposition (TD) techniques into unsupervised feature selection (UFS)<n>We use the orientation-dependent tensor-tensor product from sparse Singular Value Decomposition to solve the problem.<n>The proposed tensor PCA model can constrain sparsity at the specified mode and yield sparse tensor principal components.
- Score: 7.887782360541216
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, introducing Tensor Decomposition (TD) techniques into unsupervised feature selection (UFS) has been an emerging research topic. A tensor structure is beneficial for mining the relations between different modes and helps relieve the computation burden. However, while existing methods exploit TD to preserve the data tensor structure, they do not consider the influence of data orientation and thus have difficulty in handling orientation-specific data such as time series. To solve the above problem, we utilize the orientation-dependent tensor-tensor product from Tensor Singular Value Decomposition based on *M-product (T-SVDM) and extend the one-dimensional Sparse Principal Component Analysis (SPCA) to a tensor form. The proposed sparse tensor PCA model can constrain sparsity at the specified mode and yield sparse tensor principal components, enhancing flexibility and accuracy in learning feature relations. To ensure fast convergence and a flexible description of feature correlation, we develop a convex version specially designed for general UFS tasks and propose an efficient slice-by-slice algorithm that performs dual optimization in the transform domain. Experimental results on real-world datasets demonstrate the effectiveness and remarkable computational efficiency of the proposed method for tensor data of diverse structures over the state-of-the-arts. With a proper combination of data orientation and transform domain, our method is promising for various applications. The codes related to our proposed methods and the experiments are available at https://github.com/zjj20212035/STPCA.git.
Related papers
- Highly Adaptive Ridge [84.38107748875144]
We propose a regression method that achieves a $n-2/3$ dimension-free L2 convergence rate in the class of right-continuous functions with square-integrable sectional derivatives.
Har is exactly kernel ridge regression with a specific data-adaptive kernel based on a saturated zero-order tensor-product spline basis expansion.
We demonstrate empirical performance better than state-of-the-art algorithms for small datasets in particular.
arXiv Detail & Related papers (2024-10-03T17:06:06Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Fast Learnings of Coupled Nonnegative Tensor Decomposition Using Optimal Gradient and Low-rank Approximation [7.265645216663691]
We introduce a novel coupled nonnegative CANDECOMP/PARAFAC decomposition algorithm optimized by the alternating gradient method (CoNCPD-APG)
By integrating low-rank approximation with the proposed CoNCPD-APG method, the proposed algorithm can significantly decrease the computational burden without compromising decomposition quality.
arXiv Detail & Related papers (2023-02-10T08:49:36Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - PARAFAC2-based Coupled Matrix and Tensor Factorizations [1.7188280334580195]
We propose an algorithmic framework for fitting PARAFAC2-based CMTF models with the possibility of imposing various constraints on all modes and linear couplings.
Through numerical experiments, we demonstrate that the proposed algorithmic approach accurately recovers the underlying patterns using various constraints and linear couplings.
arXiv Detail & Related papers (2022-10-24T09:20:17Z) - Partial Least Square Regression via Three-factor SVD-type Manifold
Optimization for EEG Decoding [4.0204191666595595]
We propose a new method to solve the partial least square regression, named PLSR via optimization on bi-Grassmann manifold (PLSRbiGr)
qlPLSRbiGr is validated with a variety of experiments for decoding EEG signals at motor imagery (MI) and steady-state visual evoked potential (SSVEP) task.
arXiv Detail & Related papers (2022-08-09T11:57:02Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Measuring dissimilarity with diffeomorphism invariance [94.02751799024684]
We introduce DID, a pairwise dissimilarity measure applicable to a wide range of data spaces.
We prove that DID enjoys properties which make it relevant for theoretical study and practical use.
arXiv Detail & Related papers (2022-02-11T13:51:30Z) - Tensor Full Feature Measure and Its Nonconvex Relaxation Applications to
Tensor Recovery [1.8899300124593645]
We propose a new tensor sparsity measure called Full Feature Measure (FFM)
It can simultaneously describe the feature dimension each dimension, and connect the Tucker rank with the tensor tube rank.
Two efficient models based on FFM are proposed, and two Alternating Multiplier Method (ADMM) algorithms are developed to solve the proposed model.
arXiv Detail & Related papers (2021-09-25T01:44:34Z) - Semi-orthogonal Embedding for Efficient Unsupervised Anomaly
Segmentation [6.135577623169028]
We generalize an ad-hoc method, random feature selection, into semi-orthogonal embedding for robust approximation.
With the scrutiny of ablation studies, the proposed method achieves a new state-of-the-art with significant margins for the MVTec AD, KolektorSDD, KolektorSDD2, and mSTC datasets.
arXiv Detail & Related papers (2021-05-31T07:02:20Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - A Bayesian Approach with Type-2 Student-tMembership Function for T-S
Model Identification [47.25472624305589]
fuzzyc-regression clustering based on type-2 fuzzyset has been shown the remarkable results on non-sparse data.
Aninnovative architecture for fuzzyc-regression model is presented and a novel student-tdistribution based membership functionis designed for sparse data modelling.
arXiv Detail & Related papers (2020-09-02T05:10:13Z) - A Flexible Optimization Framework for Regularized Matrix-Tensor
Factorizations with Linear Couplings [5.079136838868448]
We propose a flexible algorithmic framework for coupled matrix and tensor factorizations.
The framework facilitates the use of a variety of constraints, loss functions and couplings with linear transformations.
arXiv Detail & Related papers (2020-07-19T06:49:59Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z) - Spectral Learning on Matrices and Tensors [74.88243719463053]
We show that tensor decomposition can pick up latent effects that are missed by matrix methods.
We also outline computational techniques to design efficient tensor decomposition methods.
arXiv Detail & Related papers (2020-04-16T22:53:00Z) - Efficient Structure-preserving Support Tensor Train Machine [0.0]
Train Multi-way Multi-level Kernel (TT-MMK)
We develop the Train Multi-way Multi-level Kernel (TT-MMK), which combines the simplicity of the Polyadic decomposition, the classification power of the Dual Structure-preserving Support Machine, and the reliability of the Train Vector approximation.
We show by experiments that the TT-MMK method is usually more reliable, less sensitive to tuning parameters, and gives higher prediction accuracy in the SVM classification when benchmarked against other state-of-the-art techniques.
arXiv Detail & Related papers (2020-02-12T16:35:10Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z) - Simple and Effective Prevention of Mode Collapse in Deep One-Class
Classification [93.2334223970488]
We propose two regularizers to prevent hypersphere collapse in deep SVDD.
The first regularizer is based on injecting random noise via the standard cross-entropy loss.
The second regularizer penalizes the minibatch variance when it becomes too small.
arXiv Detail & Related papers (2020-01-24T03:44:47Z) - A Unified Framework for Coupled Tensor Completion [42.19293115131073]
Coupled tensor decomposition reveals the joint data structure by incorporating priori knowledge that come from the latent coupled factors.
The TR has powerful expression ability and achieves success in some multi-dimensional data processing applications.
The proposed method is validated on numerical experiments on synthetic data, and experimental results on real-world data demonstrate its superiority over the state-of-the-art methods in terms of recovery accuracy.
arXiv Detail & Related papers (2020-01-09T02:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.