Cyber Security in Containerization Platforms: A Comparative Study of Security Challenges, Measures and Best Practices
- URL: http://arxiv.org/abs/2404.18082v1
- Date: Sun, 28 Apr 2024 06:22:25 GMT
- Title: Cyber Security in Containerization Platforms: A Comparative Study of Security Challenges, Measures and Best Practices
- Authors: Sohome Adhikari, Sabur Baidya,
- Abstract summary: The paper reviews the comparative study of security measures, challenges, and best practices with a view to enhancing cyber safety in containerized platforms.
This review is intended to give insight into the enhanced security posture of containerized environments.
- Score: 1.4901625182926226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper reviews the comparative study of security measures, challenges, and best practices with a view to enhancing cyber safety in containerized platforms. This review is intended to give insight into the enhanced security posture of containerized environments, with a view to examining safety vulnerabilities in containerization platforms, exploring strategies for increasing containers isolation and assessing how encryption techniques play an important role in providing secure applications. The paper also provides practical guidance for organizations seeking to strengthen their cyber security defenses in the containerization area platforms.
Related papers
- Docker under Siege: Securing Containers in the Modern Era [0.0]
This paper investigates key areas of container security, including runtime protection, network safeguards, configuration best practices, supply chain security, and comprehensive monitoring and logging solutions.<n>We identify common vulnerabilities within these domains and provide actionable recommendations to address and mitigate these risks.
arXiv Detail & Related papers (2025-05-31T13:00:52Z) - Comparative Analysis of AI-Driven Security Approaches in DevSecOps: Challenges, Solutions, and Future Directions [0.0]
This study conducts a systematic literature review to analyze and compare AI-driven security solutions in DevSecOps.
The findings reveal gaps in empirical validation, scalability, and integration of AI in security automation.
The study proposes future directions for optimizing AI-based security frameworks in DevSecOps.
arXiv Detail & Related papers (2025-04-27T08:18:11Z) - Managing Security Issues in Software Containers: From Practitioners Perspective [7.7414952119949385]
Security in containerized projects is a critical challenge that can lead to data breaches and performance degradation.
This research aims to explore security management in containerized projects by exploring how practitioners perceive the security issues.
Our analysis also identified the technical and non-technical enablers that can be utilized to enhance security.
arXiv Detail & Related papers (2025-04-10T12:49:00Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
We introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety.
AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques.
We conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness.
arXiv Detail & Related papers (2025-02-24T02:11:52Z) - SETC: A Vulnerability Telemetry Collection Framework [0.0]
This paper introduces the Security Exploit Telemetry Collection (SETC) framework.
SETC generates reproducible vulnerability exploit data at scale for robust defensive security research.
This research enables scalable exploit data generation to drive innovations in threat modeling, detection methods, analysis techniques, and strategies.
arXiv Detail & Related papers (2024-06-10T00:13:35Z) - Sok: Comprehensive Security Overview, Challenges, and Future Directions of Voice-Controlled Systems [10.86045604075024]
The integration of Voice Control Systems into smart devices accentuates the importance of their security.
Current research has uncovered numerous vulnerabilities in VCS, presenting significant risks to user privacy and security.
This study introduces a hierarchical model structure for VCS, providing a novel lens for categorizing and analyzing existing literature in a systematic manner.
We classify attacks based on their technical principles and thoroughly evaluate various attributes, such as their methods, targets, vectors, and behaviors.
arXiv Detail & Related papers (2024-05-27T12:18:46Z) - Securing the Open RAN Infrastructure: Exploring Vulnerabilities in Kubernetes Deployments [60.51751612363882]
We investigate the security implications of and software-based Open Radio Access Network (RAN) systems.
We highlight the presence of potential vulnerabilities and misconfigurations in the infrastructure supporting the Near Real-Time RAN Controller (RIC) cluster.
arXiv Detail & Related papers (2024-05-03T07:18:45Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications.
This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark.
arXiv Detail & Related papers (2023-12-30T17:37:06Z) - Safety-Gymnasium: A Unified Safe Reinforcement Learning Benchmark [12.660770759420286]
We present an environment suite called Safety-Gymnasium, which encompasses safety-critical tasks in both single and multi-agent scenarios.
We offer a library of algorithms named Safe Policy Optimization (SafePO), comprising 16 state-of-the-art SafeRL algorithms.
arXiv Detail & Related papers (2023-10-19T08:19:28Z) - Cyber Security Requirements for Platforms Enhancing AI Reproducibility [0.0]
This study focuses on the field of artificial intelligence (AI) and introduces a new framework for evaluating AI platforms.
Five popular AI platforms; Floydhub, BEAT, Codalab, Kaggle, and OpenML were assessed.
The analysis revealed that none of these platforms fully incorporates the necessary cyber security measures.
arXiv Detail & Related papers (2023-09-27T09:43:46Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
Safety assurance cases (SACs) can be challenging to maintain during system evolution.
We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models.
We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety.
arXiv Detail & Related papers (2023-07-14T16:03:27Z) - A Systematization of Cybersecurity Regulations, Standards and Guidelines
for the Healthcare Sector [5.121113572240309]
This paper contributes a systematization of the significant cybersecurity documents relevant to the healthcare sector.
We collected the 49 most significant documents and used the NIST cybersecurity framework to categorize key information.
arXiv Detail & Related papers (2023-04-28T16:19:21Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
This survey presents a framework for safety research pertaining to large models.
We begin by introducing safety issues of wide concern, then delve into safety evaluation methods for large models.
We explore the strategies for enhancing large model safety from training to deployment.
arXiv Detail & Related papers (2023-02-18T09:32:55Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.