Revisiting Majumdar-Ghosh spin chain model and Max-cut problem using variational quantum algorithms
- URL: http://arxiv.org/abs/2404.18142v1
- Date: Sun, 28 Apr 2024 11:16:20 GMT
- Title: Revisiting Majumdar-Ghosh spin chain model and Max-cut problem using variational quantum algorithms
- Authors: Britant, Anirban Pathak,
- Abstract summary: Energy levels of the Majumdar-Ghosh model (MGM) are analyzed up to 15 spins chain in a noisy quantum framework.
We have solved this model for interaction coefficients other than that required for the exactly solvable conditions.
This solution can be of help in understanding the quantum phase transitions in complex spin chain models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, energy levels of the Majumdar-Ghosh model (MGM) are analyzed up to 15 spins chain in the noisy intermediate-scale quantum framework using noisy simulations. This is a useful model whose exact solution is known for a particular choice of interaction coefficients. We have solved this model for interaction coefficients other than that required for the exactly solvable conditions as this solution can be of help in understanding the quantum phase transitions in complex spin chain models. The solutions are obtained using quantum approximate optimization algorithms (QAOA), and variational quantum eigensolver (VQE). To obtain the solutions, the one-dimensional lattice network is mapped to a Hamiltonian that corresponds to the required interaction coefficients among spins. Then, the ground states energy eigenvalue of this Hamiltonian is found using QAOA and VQE. Further, the validity of the Lieb-Schultz-Mattis theorem in the context of MGM is established by employing variational quantum deflation to find the first excited energy of MGM. Solution for an unweighted Max-cut graph for 17 nodes is also obtained using QAOA and VQE to know which one of these two techniques performs better in a combinatorial optimization problem. Since the variational quantum algorithms used here to revisit the Max-cut problem and MGM are hybrid algorithms, they require classical optimization. Consequently, the results obtained using different types of classical optimizers are compared to reveal that the QNSPSA optimizer improves the convergence of QAOA in comparison to the SPSA optimizer. However, VQE with EfficientSU2 ansatz using the SPSA optimizer yields the best results.
Related papers
- Optimizing Unitary Coupled Cluster Wave Functions on Quantum Hardware: Error Bound and Resource-Efficient Optimizer [0.0]
We study the projective quantum eigensolver (PQE) approach to optimizing unitary coupled cluster wave functions on quantum hardware.
The algorithm uses projections of the Schr"odinger equation to efficiently bring the trial state closer to an eigenstate of the Hamiltonian.
We present numerical evidence of superiority over both the optimization introduced in arXiv:2102.00345 and VQE optimized using the Broyden Fletcher Goldfarb Shanno (BFGS) method.
arXiv Detail & Related papers (2024-10-19T15:03:59Z) - MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
Quantum Approximate Optimization Algorithm (QAOA) and its variants exhibit immense potential in tackling optimization challenges.
The requisite circuit depth for satisfactory performance is problem-specific and often exceeds the maximum capability of current quantum devices.
We introduce the Mixer Generator Network (MG-Net), a unified deep learning framework adept at dynamically formulating optimal mixer Hamiltonians.
arXiv Detail & Related papers (2024-09-27T12:28:18Z) - Hybrid Quantum Classical Simulations [0.0]
We report on two major hybrid applications of quantum computing, namely, the quantum approximate optimisation algorithm (QAOA) and the variational quantum eigensolver (VQE)
Both are hybrid quantum classical algorithms as they require incremental communication between a classical central processing unit and a quantum processing unit to solve a problem.
arXiv Detail & Related papers (2022-10-06T10:49:15Z) - How Much Entanglement Do Quantum Optimization Algorithms Require? [0.0]
We study the entanglement generated during the execution of ADAPT-QAOA.
By incrementally restricting this flexibility, we find that a larger amount of entanglement entropy at earlier stages coincides with faster convergence at later stages.
arXiv Detail & Related papers (2022-05-24T18:00:02Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - MoG-VQE: Multiobjective genetic variational quantum eigensolver [0.0]
Variational quantum eigensolver (VQE) emerged as a first practical algorithm for near-term quantum computers.
Here, we propose the approach which can combine both low depth and improved precision.
We observe nearly ten-fold reduction in the two-qubit gate counts as compared to the standard hardware-efficient ansatz.
arXiv Detail & Related papers (2020-07-08T20:44:50Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.