Innovative Application of Artificial Intelligence Technology in Bank Credit Risk Management
- URL: http://arxiv.org/abs/2404.18183v1
- Date: Sun, 28 Apr 2024 13:29:35 GMT
- Title: Innovative Application of Artificial Intelligence Technology in Bank Credit Risk Management
- Authors: Shuochen Bi, Wenqing Bao,
- Abstract summary: With the rapid growth of technology, especially the widespread application of artificial intelligence (AI) technology, the risk management level of commercial banks is constantly reaching new heights.
Through deep learning and big data analysis, AI can accurately evaluate the credit status of borrowers, timely identify potential risks, and provide banks with more accurate and comprehensive credit decision support.
At the same time, AI can also achieve realtime monitoring and early warning, helping banks intervene before risks occur and reduce losses.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid growth of technology, especially the widespread application of artificial intelligence (AI) technology, the risk management level of commercial banks is constantly reaching new heights. In the current wave of digitalization, AI has become a key driving force for the strategic transformation of financial institutions, especially the banking industry. For commercial banks, the stability and safety of asset quality are crucial, which directly relates to the long-term stable growth of the bank. Among them, credit risk management is particularly core because it involves the flow of a large amount of funds and the accuracy of credit decisions. Therefore, establishing a scientific and effective credit risk decision-making mechanism is of great strategic significance for commercial banks. In this context, the innovative application of AI technology has brought revolutionary changes to bank credit risk management. Through deep learning and big data analysis, AI can accurately evaluate the credit status of borrowers, timely identify potential risks, and provide banks with more accurate and comprehensive credit decision support. At the same time, AI can also achieve realtime monitoring and early warning, helping banks intervene before risks occur and reduce losses.
Related papers
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Research on Credit Risk Early Warning Model of Commercial Banks Based on Neural Network Algorithm [12.315852697312195]
This study harnesses advanced neural network techniques, notably the Backpropagation (BP) neural network, to pioneer a novel model for preempting credit risk in commercial banks.
Research findings evinced that this model efficaciously enhances the foresight and precision of credit risk management.
arXiv Detail & Related papers (2024-05-17T13:18:46Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Applications of Generative AI (Gen AI) are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about the potential risks of the technology, and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source generative AI.
arXiv Detail & Related papers (2024-05-14T13:37:36Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
Governments and companies have started to leverage compute as a means to govern AI.
compute-based policies and technologies have the potential to assist in these areas, but there is significant variation in their readiness for implementation.
naive or poorly scoped approaches to compute governance carry significant risks in areas like privacy, economic impacts, and centralization of power.
arXiv Detail & Related papers (2024-02-13T21:10:21Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - The AI Revolution: Opportunities and Challenges for the Finance Sector [12.486180180030964]
The application of AI in the financial sector is transforming the industry.
However, along with these benefits, AI also presents several challenges.
These include issues related to transparency, interpretability, fairness, accountability, and trustworthiness.
The use of AI in the financial sector further raises critical questions about data privacy and security.
Despite the global recognition of this need, there remains a lack of clear guidelines or legislation for AI use in finance.
arXiv Detail & Related papers (2023-08-31T08:30:09Z) - A Brief Overview of AI Governance for Responsible Machine Learning
Systems [3.222802562733787]
This position paper seeks to present a brief introduction to AI governance, which is a framework designed to oversee the responsible use of AI.
Due to the probabilistic nature of AI, the risks associated with it are far greater than traditional technologies.
arXiv Detail & Related papers (2022-11-21T23:48:51Z) - Managers versus Machines: Do Algorithms Replicate Human Intuition in
Credit Ratings? [0.0]
We show that it is possible to find machine learning algorithms that can replicate the behavior of the bank managers.
The input to the algorithms consists of a combination of standard financials and soft information available to bank managers.
Our results highlight the effectiveness of machine learning based analytic approaches to banking and the potential challenges to high-skill jobs in the financial sector.
arXiv Detail & Related papers (2022-02-09T01:20:44Z) - Explaining Credit Risk Scoring through Feature Contribution Alignment
with Expert Risk Analysts [1.7778609937758323]
We focus on companies credit scoring and we benchmark different machine learning models.
The aim is to build a model to predict whether a company will experience financial problems in a given time horizon.
We bring light by providing an expert-aligned feature relevance score highlighting the disagreement between a credit risk expert and a model feature attribution explanation.
arXiv Detail & Related papers (2021-03-15T12:59:15Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
Credit Risk Modelling plays a paramount role.
Recent machine and deep learning techniques have been applied to the task.
We suggest to use LIME technique to tackle the explainability problem in this field.
arXiv Detail & Related papers (2020-12-30T10:27:59Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
This paper proposes a framework of Privacy-preserving Credit risk modeling based on Adversarial Learning (PCAL)
PCAL aims to mask the private information inside the original dataset, while maintaining the important utility information for the target prediction task performance.
Results indicate that PCAL can learn an effective, privacy-free representation from user data, providing a solid foundation towards privacy-preserving machine learning for credit risk analysis.
arXiv Detail & Related papers (2020-10-06T07:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.