Research on Credit Risk Early Warning Model of Commercial Banks Based on Neural Network Algorithm
- URL: http://arxiv.org/abs/2405.10762v2
- Date: Thu, 30 May 2024 08:13:30 GMT
- Title: Research on Credit Risk Early Warning Model of Commercial Banks Based on Neural Network Algorithm
- Authors: Yu Cheng, Qin Yang, Liyang Wang, Ao Xiang, Jingyu Zhang,
- Abstract summary: This study harnesses advanced neural network techniques, notably the Backpropagation (BP) neural network, to pioneer a novel model for preempting credit risk in commercial banks.
Research findings evinced that this model efficaciously enhances the foresight and precision of credit risk management.
- Score: 12.315852697312195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of globalized financial markets, commercial banks are confronted with an escalating magnitude of credit risk, thereby imposing heightened requisites upon the security of bank assets and financial stability. This study harnesses advanced neural network techniques, notably the Backpropagation (BP) neural network, to pioneer a novel model for preempting credit risk in commercial banks. The discourse initially scrutinizes conventional financial risk preemptive models, such as ARMA, ARCH, and Logistic regression models, critically analyzing their real-world applications. Subsequently, the exposition elaborates on the construction process of the BP neural network model, encompassing network architecture design, activation function selection, parameter initialization, and objective function construction. Through comparative analysis, the superiority of neural network models in preempting credit risk in commercial banks is elucidated. The experimental segment selects specific bank data, validating the model's predictive accuracy and practicality. Research findings evince that this model efficaciously enhances the foresight and precision of credit risk management.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Quantum Powered Credit Risk Assessment: A Novel Approach using hybrid Quantum-Classical Deep Neural Network for Row-Type Dependent Predictive Analysis [0.0]
This study introduces a framework for credit risk assessment in the banking sector, combining quantum deep learning techniques with adaptive modeling for Row-Type Dependent Predictive Analysis (RTDPA)
The proposed approach tailors predictive models to different loan categories, aiming to enhance the accuracy and efficiency of credit risk evaluation.
arXiv Detail & Related papers (2025-02-06T10:57:18Z) - Leveraging Convolutional Neural Network-Transformer Synergy for Predictive Modeling in Risk-Based Applications [5.914777314371152]
This paper proposes a deep learning model based on the combination of convolutional neural networks (CNN) and Transformer for credit user default prediction.
The results show that the CNN+Transformer model outperforms traditional machine learning models, such as random forests and XGBoost.
This study provides a new idea for credit default prediction and provides strong support for risk assessment and intelligent decision-making in the financial field.
arXiv Detail & Related papers (2024-12-24T07:07:14Z) - Risk-Averse Certification of Bayesian Neural Networks [70.44969603471903]
We propose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN.
Our method leverages sampling and optimisation to compute a sound approximation of the output set of a BNN.
We validate RAC-BNN on a range of regression and classification benchmarks and compare its performance with a state-of-the-art method.
arXiv Detail & Related papers (2024-11-29T14:22:51Z) - KACDP: A Highly Interpretable Credit Default Prediction Model [2.776411854233918]
This paper introduces a method based on Kolmogorov-Arnold Networks (KANs)
KANs is a new type of neural network architecture with learnable activation functions and no linear weights.
Experiments show that the KACDP model outperforms mainstream credit default prediction models in performance metrics.
arXiv Detail & Related papers (2024-11-26T12:58:03Z) - Applying Hybrid Graph Neural Networks to Strengthen Credit Risk Analysis [4.457653449326353]
This paper presents a novel approach to credit risk prediction by employing Graph Convolutional Neural Networks (GCNNs)
The proposed method addresses the challenges faced by traditional credit risk assessment models, particularly in handling imbalanced datasets.
The study demonstrates the potential of GCNNs in improving the accuracy of credit risk prediction, offering a robust solution for financial institutions.
arXiv Detail & Related papers (2024-10-05T20:49:05Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Sequential Deep Learning for Credit Risk Monitoring with Tabular
Financial Data [0.901219858596044]
We present our attempts to create a novel approach to assessing credit risk using deep learning.
We propose a new credit card transaction sampling technique to use with deep recurrent and causal convolution-based neural networks.
We show that our sequential deep learning approach using a temporal convolutional network outperformed the benchmark non-sequential tree-based model.
arXiv Detail & Related papers (2020-12-30T21:29:48Z) - Neural Network-based Automatic Factor Construction [58.96870869237197]
This paper proposes Neural Network-based Automatic Factor Construction (NNAFC)
NNAFC can automatically construct diversified financial factors based on financial domain knowledge.
New factors constructed by NNAFC can always improve the return, Sharpe ratio, and the max draw-down of a multi-factor quantitative investment strategy.
arXiv Detail & Related papers (2020-08-14T07:44:49Z) - A general framework for defining and optimizing robustness [74.67016173858497]
We propose a rigorous and flexible framework for defining different types of robustness properties for classifiers.
Our concept is based on postulates that robustness of a classifier should be considered as a property that is independent of accuracy.
We develop a very general robustness framework that is applicable to any type of classification model.
arXiv Detail & Related papers (2020-06-19T13:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.