論文の概要: DyExplainer: Explainable Dynamic Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2310.16375v1
- Date: Wed, 25 Oct 2023 05:26:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 16:39:11.268220
- Title: DyExplainer: Explainable Dynamic Graph Neural Networks
- Title(参考訳): DyExplainer: 説明可能な動的グラフニューラルネットワーク
- Authors: Tianchun Wang, Dongsheng Luo, Wei Cheng, Haifeng Chen, Xiang Zhang
- Abstract要約: 我々は,動的グラフニューラルネットワーク(GNN)を高速に説明するための新しいアプローチであるDyExplainerを提案する。
DyExplainerは動的なGNNバックボーンをトレーニングし、各スナップショットでグラフの表現を抽出する。
また,事前指導型正規化を実現するために,コントラスト学習技術によるアプローチも強化する。
- 参考スコア(独自算出の注目度): 37.16783248212211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) resurge as a trending research subject owing to
their impressive ability to capture representations from graph-structured data.
However, the black-box nature of GNNs presents a significant challenge in terms
of comprehending and trusting these models, thereby limiting their practical
applications in mission-critical scenarios. Although there has been substantial
progress in the field of explaining GNNs in recent years, the majority of these
studies are centered on static graphs, leaving the explanation of dynamic GNNs
largely unexplored. Dynamic GNNs, with their ever-evolving graph structures,
pose a unique challenge and require additional efforts to effectively capture
temporal dependencies and structural relationships. To address this challenge,
we present DyExplainer, a novel approach to explaining dynamic GNNs on the fly.
DyExplainer trains a dynamic GNN backbone to extract representations of the
graph at each snapshot, while simultaneously exploring structural relationships
and temporal dependencies through a sparse attention technique. To preserve the
desired properties of the explanation, such as structural consistency and
temporal continuity, we augment our approach with contrastive learning
techniques to provide priori-guided regularization. To model longer-term
temporal dependencies, we develop a buffer-based live-updating scheme for
training. The results of our extensive experiments on various datasets
demonstrate the superiority of DyExplainer, not only providing faithful
explainability of the model predictions but also significantly improving the
model prediction accuracy, as evidenced in the link prediction task.
- Abstract(参考訳): グラフニューラルネットワーク(gnns)は、グラフ構造化データから表現をキャプチャする素晴らしい能力によって、トレンド研究の対象として復活する。
しかしながら、GNNのブラックボックスの性質は、これらのモデルの理解と信頼性において重要な課題を示し、ミッションクリティカルなシナリオにおける実践的応用を制限する。
近年、GNNの説明の分野ではかなりの進歩があったが、これらの研究の大部分は静的グラフを中心にしており、動的GNNの説明はほとんど探索されていない。
進化を続けるグラフ構造を持つ動的gnnは、独特な課題をもたらし、時間的依存関係と構造的関係を効果的に捉えるために追加の努力を必要とする。
この課題に対処するために,動的GNNを高速で説明するための新しいアプローチであるDyExplainerを提案する。
DyExplainerは動的なGNNバックボーンをトレーニングし、スナップショット毎にグラフの表現を抽出すると同時に、スパースアテンションテクニックを通じて構造的関係と時間的依存関係を同時に探索する。
構造的整合性や時間的連続性といった説明の望ましい性質を維持するため,我々は,事前誘導正規化を実現するために,コントラスト学習技術を用いてアプローチを強化する。
長期の時間依存性をモデル化するために,バッファベースのトレーニング用ライブ更新方式を開発した。
様々なデータセットを用いた広範な実験の結果,モデル予測の忠実な説明性だけでなく,リンク予測タスクで証明されたモデル予測精度も大幅に向上した。
関連論文リスト
- Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - A survey of dynamic graph neural networks [26.162035361191805]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングし学習するための強力なツールとして登場した。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
論文 参考訳(メタデータ) (2024-04-28T15:07:48Z) - Exploring Time Granularity on Temporal Graphs for Dynamic Link
Prediction in Real-world Networks [0.48346848229502226]
動的グラフニューラルネットワーク(DGNN)は、動的グラフ構造化データを処理するための主要なアプローチである。
本稿では,DGNNを訓練する際の時間粒度が動的グラフに与える影響について,広範な実験を通して検討する。
論文 参考訳(メタデータ) (2023-11-21T00:34:53Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
グラフニューラルネットワーク(GNN)の関数空間におけるトレーニングダイナミクスについて検討する。
GNNの勾配勾配勾配最適化は暗黙的にグラフ構造を利用して学習関数を更新する。
この発見は、学習したGNN関数が一般化した時期と理由に関する新たな解釈可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-10-08T10:19:56Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
本稿では,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を紹介する。
RSGTは、繰り返し学習パラダイムを通じて、グラフトポロジと進化力学の両方をコードする時間ノード表現をキャプチャする。
離散動的グラフ表現学習におけるRSGTの優れた性能を示し、動的リンク予測タスクにおける既存の手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-04-20T04:12:50Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - An Explainer for Temporal Graph Neural Networks [27.393641343203363]
時空間グラフニューラルネットワーク(TGNN)は、時間発展するグラフ関連タスクのモデリングに広く用いられている。
本稿では,TGNNモデルのための新しい説明フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-02T04:12:40Z) - Explaining Dynamic Graph Neural Networks via Relevance Back-propagation [8.035521056416242]
グラフニューラルネットワーク(GNN)は、グラフ構造化データにおいて、豊富な情報を捕捉する際、顕著な効果を示した。
GNNのブラックボックスの性質は、モデルの理解と信頼を妨げるため、アプリケーションに困難をもたらす。
本稿ではDGExplainerを提案し,動的GNNの信頼性について説明する。
論文 参考訳(メタデータ) (2022-07-22T16:20:34Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。