論文の概要: Fisher Information Improved Training-Free Conditional Diffusion Model
- arxiv url: http://arxiv.org/abs/2404.18252v1
- Date: Sun, 28 Apr 2024 17:18:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 15:25:56.909104
- Title: Fisher Information Improved Training-Free Conditional Diffusion Model
- Title(参考訳): 訓練自由条件拡散モデルに基づく漁業情報の改善
- Authors: Kaiyu Song, Hanjiang Lai,
- Abstract要約: 条件付き画像生成タスクのためのフィッシャー情報誘導拡散モデル(FIGD)を提案する。
我々は,フィッシャー情報によってFIGDの一般化が保証され,情報理論に基づく学習不要な手法に対する新たな洞察が得られたことを実証する。
- 参考スコア(独自算出の注目度): 7.3604864243987365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the diffusion model with the training-free methods has succeeded in conditional image generation tasks. However, there is an efficiency problem because it requires calculating the gradient with high computational cost, and previous methods make strong assumptions to solve it, sacrificing generalization. In this work, we propose the Fisher information guided diffusion model (FIGD). Concretely, we introduce the Fisher information to estimate the gradient without making any additional assumptions to reduce computation cost. Meanwhile, we demonstrate that the Fisher information ensures the generalization of FIGD and provides new insights for training-free methods based on the information theory. The experimental results demonstrate that FIGD could achieve different conditional generations more quickly while maintaining high quality.
- Abstract(参考訳): 近年,条件付き画像生成タスクにおいて,トレーニング不要な手法による拡散モデルが成功している。
しかし、計算コストの高い勾配を計算する必要があるため、効率上の問題があり、従来の手法はそれを解くために強い仮定をしており、一般化を犠牲にしている。
本研究では,フィッシャー情報誘導拡散モデル(FIGD)を提案する。
具体的には,計算コストの削減を前提とせずに,勾配を推定するためにフィッシャー情報を導入する。
一方,フィッシャー情報によってFIGDの一般化が保証され,情報理論に基づく学習自由な手法に対する新たな洞察が得られた。
実験により,FIGDは高品質を維持しつつ,異なる条件付き世代をより早く達成できることが示された。
関連論文リスト
- Schr\"odinger bridge based deep conditional generative learning [0.0]
我々は条件分布を学習するための新しいSchr"odinger Bridgeに基づく深層生成手法を提案する。
本手法を低次元および高次元条件生成問題に適用する。
論文 参考訳(メタデータ) (2024-09-25T19:08:13Z) - Don't drop your samples! Coherence-aware training benefits Conditional diffusion [17.349357521783062]
Coherence-Aware Diffusion (CAD) は条件情報のコヒーレンスを拡散モデルに統合する新しい手法である。
CADは理論的に健全であり,様々な条件生成タスクに対して実験的に有効であることを示す。
論文 参考訳(メタデータ) (2024-05-30T17:57:26Z) - Bridging the Gap: Addressing Discrepancies in Diffusion Model Training
for Classifier-Free Guidance [1.6804613362826175]
拡散モデルは、生成モデルにおいて重要な進歩として現れている。
本稿では,従来の訓練方法と所望の条件付きサンプリング行動との相違点を明らかにすることを目的とする。
トレーニング目標とサンプリング行動との整合性を向上する改良された損失関数を導入する。
論文 参考訳(メタデータ) (2023-11-02T02:03:12Z) - CADS: Unleashing the Diversity of Diffusion Models through Condition-Annealed Sampling [27.795088366122297]
Condition-Annealed Diffusion Sampler (CADS) は任意の事前学習モデルとサンプリングアルゴリズムで使用することができる。
本研究では,様々な条件生成タスクにおける拡散モデルの多様性を向上することを示す。
論文 参考訳(メタデータ) (2023-10-26T12:27:56Z) - Instructed Diffuser with Temporal Condition Guidance for Offline
Reinforcement Learning [71.24316734338501]
テンポラリ・コンポラブル・ディフューザ(TCD)を用いた実効時間条件拡散モデルを提案する。
TCDは、相互作用シーケンスから時間情報を抽出し、時間条件で生成を明示的にガイドする。
提案手法は,従来のSOTAベースラインと比較して最高の性能を達成または一致させる。
論文 参考訳(メタデータ) (2023-06-08T02:12:26Z) - Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations [94.04631421741986]
本稿では,学習したデノイザネットワークの内部表現を用いて,事前学習した非条件拡散モデルを新しい条件に適用することを提案する。
提案手法により生成した合成画像を用いたTiny ImageNetトレーニングセットの強化により,ResNetベースラインの分類精度が最大8%向上することを示す。
論文 参考訳(メタデータ) (2023-06-02T20:09:57Z) - Collapse by Conditioning: Training Class-conditional GANs with Limited
Data [109.30895503994687]
非条件学習を活用することにより、観測モード崩壊を効果的に防止する条件付きGAN(cGAN)のトレーニング戦略を提案する。
我々のトレーニング戦略は、無条件のGANから始まり、徐々に条件情報をジェネレータと目的関数に注入する。
安定したトレーニングだけでなく,高品質な画像を生成するために,限られたデータでcGANを訓練する手法を提案する。
論文 参考訳(メタデータ) (2022-01-17T18:59:23Z) - PriorGrad: Improving Conditional Denoising Diffusion Models with
Data-Driven Adaptive Prior [103.00403682863427]
条件拡散モデルの効率を改善するために, PreGrad を提案する。
PriorGradはデータとパラメータの効率を向上し、品質を向上する。
論文 参考訳(メタデータ) (2021-06-11T14:04:03Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
本稿では,テキスト生成で遭遇する大規模なサンプル空間において,効率よく安定な自動回帰シーケンス生成モデルのトレーニング手法を提案する。
本手法は,品質と多様性の両面で,最大類似度推定や他の最先端シーケンス生成モデルよりも安定に優れている。
論文 参考訳(メタデータ) (2020-07-12T15:31:24Z) - On Leveraging Pretrained GANs for Generation with Limited Data [83.32972353800633]
生成的敵ネットワーク(GAN)は、しばしば(人間によって)実際の画像と区別できない非常に現実的な画像を生成することができる。
このように生成されたほとんどの画像はトレーニングデータセットには含まれておらず、GAN生成データでトレーニングセットを増強する可能性を示唆している。
我々は、大規模なデータセットで事前訓練された既存のGANモデルを活用し、トランスファーラーニングの概念に従って追加の知識を導入する。
限られたデータを用いた生成における提案手法の有効性を示すため, 広範囲な実験を行った。
論文 参考訳(メタデータ) (2020-02-26T21:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。