論文の概要: Improving Training-free Conditional Diffusion Model via Fisher Information
- arxiv url: http://arxiv.org/abs/2404.18252v2
- Date: Tue, 12 Nov 2024 08:01:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:03.311636
- Title: Improving Training-free Conditional Diffusion Model via Fisher Information
- Title(参考訳): 漁業情報による無訓練条件拡散モデルの改善
- Authors: Kaiyu Song, Hanjiang Lai,
- Abstract要約: 条件に応じて高品質なサンプルを生成するための,フィッシャー情報に基づく新しい条件拡散モデルを提案する。
本研究では,各生成段階における条件のインフォメーション性を測定するために,フィッシャー情報が重みとして機能することを示す。
実験の結果,提案したFICDは,ほとんどのベースラインと同じサンプリングステップで最大2倍のスピードアップを提供できることがわかった。
- 参考スコア(独自算出の注目度): 7.3604864243987365
- License:
- Abstract: Training-free conditional diffusion models have received great attention in conditional image generation tasks. However, they require a computationally expensive conditional score estimator to let the intermediate results of each step in the reverse process toward the condition, which causes slow conditional generation. In this paper, we propose a novel Fisher information-based conditional diffusion (FICD) model to generate high-quality samples according to the condition. In particular, we further explore the conditional term from the perspective of Fisher information, where we show Fisher information can act as a weight to measure the informativeness of the condition in each generation step. According to this new perspective, we can control and gain more information along the conditional direction in the generation space. Thus, we propose the upper bound of the Fisher information to reformulate the conditional term, which increases the information gain and decreases the time cost. Experimental results also demonstrate that the proposed FICD can offer up to 2x speed-ups under the same sampling steps as most baselines. Meanwhile, FICD can improve the generation quality in various tasks compared to the baselines with a low computation cost.
- Abstract(参考訳): 条件付き条件付き拡散モデルは条件付き画像生成タスクにおいて大きな注目を集めている。
しかし、計算コストのかかる条件スコア推定器が必要であり、各ステップの中間結果を逆の過程に向けることで条件生成が遅くなる。
本稿では,その条件に応じて高品質なサンプルを生成するための新しいFisher Information-based Conditional diffusion (FICD)モデルを提案する。
特に、フィッシャー情報の観点から条件項をさらに探求し、各生成ステップにおける条件の情報量を測定するために、フィッシャー情報が重みとして機能することを示す。
この新たな視点により、生成空間の条件方向に沿って、より多くの情報を制御および取得することができる。
そこで本稿では,情報ゲインを増大させ,時間的コストを低減させる条件項を再構成するフィッシャー情報の上界を提案する。
また,提案したFICDは,ほとんどのベースラインと同じサンプリングステップで最大2倍のスピードアップを提供できることを示した。
一方、FICDは、計算コストの低いベースラインに比べて、様々なタスクにおける生成品質を向上させることができる。
関連論文リスト
- An Expectation-Maximization Algorithm for Training Clean Diffusion Models from Corrupted Observations [21.411327264448058]
本稿では, 予測最大化(EM)手法を提案し, 劣化した観測から拡散モデルを訓練する。
本手法は, 既知拡散モデル(E-step)を用いた劣化データからのクリーン画像の再構成と, これらの再構成(M-step)に基づく拡散モデル重みの精製とを交互に行う。
この反復過程は、学習された拡散モデルを真のクリーンなデータ分布に徐々に収束させる。
論文 参考訳(メタデータ) (2024-07-01T07:00:17Z) - Manifold Preserving Guided Diffusion [121.97907811212123]
条件付き画像生成は、コスト、一般化可能性、タスク固有のトレーニングの必要性といった課題に直面している。
トレーニング不要な条件生成フレームワークであるManifold Preserving Guided Diffusion (MPGD)を提案する。
論文 参考訳(メタデータ) (2023-11-28T02:08:06Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - The Surprising Effectiveness of Diffusion Models for Optical Flow and
Monocular Depth Estimation [42.48819460873482]
拡散確率モデルは、その印象的な忠実さと多様性で画像生成を変換した。
また,タスク固有のアーキテクチャや損失関数を使わずに,光学的フローと単眼深度の推定に優れることを示す。
論文 参考訳(メタデータ) (2023-06-02T21:26:20Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
我々は、事前訓練されたモデルのゼロショット構造化プルーニングにより、性能を最小限に抑えて計算効率を向上させることができると主張している。
その結果,事前訓練されたモデルの畳み込み畳み込みフィルタは,低計算条件下で20%以上の性能向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-25T21:49:09Z) - Improving Sample Efficiency of Deep Learning Models in Electricity
Market [0.41998444721319217]
我々は,サンプルの効率を向上させるため,知識強化トレーニング(KAT)という一般的なフレームワークを提案する。
本稿では,いくつかの合成データを生成する新しいデータ拡張手法を提案する。
現代の学習理論は, 効果的な予測誤差フィードバック, 信頼損失関数, リッチ勾配雑音の観点から, 提案手法の有効性を実証している。
論文 参考訳(メタデータ) (2022-10-11T16:35:13Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。