論文の概要: Generating Situated Reflection Triggers about Alternative Solution Paths: A Case Study of Generative AI for Computer-Supported Collaborative Learning
- arxiv url: http://arxiv.org/abs/2404.18262v1
- Date: Sun, 28 Apr 2024 17:56:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 15:25:56.893618
- Title: Generating Situated Reflection Triggers about Alternative Solution Paths: A Case Study of Generative AI for Computer-Supported Collaborative Learning
- Title(参考訳): 代替ソリューションパスに関する推定反射トリガーの生成:コンピュータ支援協調学習のための生成AIを事例として
- Authors: Atharva Naik, Jessica Ruhan Yin, Anusha Kamath, Qianou Ma, Sherry Tongshuang Wu, Charles Murray, Christopher Bogart, Majd Sakr, Carolyn P. Rose,
- Abstract要約: 本稿では,学生に動的かつ文脈的フィードバックを提供する概念実証アプリケーションを提案する。
具体的には、ChatGPTを使って、大学レベルのクラウドコンピューティングコースのためのオンラインプログラミング演習ボットを拡張します。
LLMは、コンテキスト内で発生する協調的な議論の詳細を組み込んだ、高度に位置決めされたリフレクショントリガを生成するために使用できることを実証する。
- 参考スコア(独自算出の注目度): 3.2721068185888127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An advantage of Large Language Models (LLMs) is their contextualization capability - providing different responses based on student inputs like solution strategy or prior discussion, to potentially better engage students than standard feedback. We present a design and evaluation of a proof-of-concept LLM application to offer students dynamic and contextualized feedback. Specifically, we augment an Online Programming Exercise bot for a college-level Cloud Computing course with ChatGPT, which offers students contextualized reflection triggers during a collaborative query optimization task in database design. We demonstrate that LLMs can be used to generate highly situated reflection triggers that incorporate details of the collaborative discussion happening in context. We discuss in depth the exploration of the design space of the triggers and their correspondence with the learning objectives as well as the impact on student learning in a pilot study with 34 students.
- Abstract(参考訳): 大規模言語モデル(LLMs)の利点は、そのコンテキスト化能力である - ソリューション戦略や事前の議論といった、学生の入力に基づいて異なる応答を提供することによって、標準的フィードバックよりも学生の参加性を高めることができる。
本稿では,学生に動的かつ文脈的フィードバックを提供するための概念実証 LLM アプリケーションの設計と評価について述べる。
具体的には、ChatGPTを用いて、大学レベルのクラウドコンピューティングコースのためのオンラインプログラミング演習ボットを拡張し、データベース設計における協調クエリ最適化タスク中に、学生にコンテキスト化されたリフレクショントリガを提供する。
LLMは、コンテキスト内で発生する協調的な議論の詳細を組み込んだ、高度に位置決めされたリフレクショントリガを生成するために使用できることを実証する。
我々は,34人の学生を対象としたパイロット研究において,トリガーの設計空間の探索と学習目標との対応,および学生の学習への影響について深く議論した。
関連論文リスト
- Oversight in Action: Experiences with Instructor-Moderated LLM Responses in an Online Discussion Forum [2.86800540498016]
本稿では,インストラクターが制御するボットモジュールの設計,展開,評価について述べる。
ボットは、学生の質問に対するドラフトレスポンスを生成し、リリース前にレビュー、修正、承認される。
我々は、オブジェクト指向プログラミングに関する12週間のソフトウェア工学コースで、このツールを使った経験を報告する。
論文 参考訳(メタデータ) (2024-12-12T08:17:33Z) - Exploring Knowledge Tracing in Tutor-Student Dialogues using LLMs [49.18567856499736]
本研究では,大規模言語モデル(LLM)が対話学習を支援することができるかどうかを検討する。
我々は,学習者の知識レベルを対話全体にわたって追跡するために,ラベル付きデータに知識追跡(KT)手法を適用した。
我々は,2つの学習対話データセットの実験を行い,従来のKT手法よりも学生の反応の正しさを予測できる新しいLCM-based method LLMKTが優れていることを示す。
論文 参考訳(メタデータ) (2024-09-24T22:31:39Z) - ChatGPT in Data Visualization Education: A Student Perspective [19.58123915686711]
本研究では,これらの技術が学際的,プロジェクト指向のデータ可視化コースにおける学生の学習に与える影響について検討する。
学生は4つの異なるプロジェクトにわたってChatGPTに従事し、Tableau、D3、Vega-liteといったさまざまなツールを使ってデータの視覚化を設計および実装した。
分析では,ChatGPTの活用のメリットと障壁,学生の質問行動,支援のタイプ,課題の成果とエンゲージメントに与える影響について検討した。
論文 参考訳(メタデータ) (2024-05-01T02:40:20Z) - Analyzing LLM Usage in an Advanced Computing Class in India [4.580708389528142]
本研究では,大規模言語モデル(LLM)を,大学院生や大学院生が高度なコンピューティングクラスにおけるプログラミング課題に活用することを検討した。
インド大学の分散システムクラスから411名の学生を対象に,総合的な分析を行った。
論文 参考訳(メタデータ) (2024-04-06T12:06:56Z) - A Picture Is Worth a Thousand Words: Exploring Diagram and Video-Based
OOP Exercises to Counter LLM Over-Reliance [2.1490831374964587]
大規模言語モデル(LLM)は、テキストベースの仕様で、より複雑なオブジェクト指向プログラミング(OOP)の課題を効果的に解決することができる。
これは、学生がこれらのモデルを使って非倫理的に課題を完了させるため、学術的完全性に対する懸念を提起する。
本稿では,OOP の授業において,学生の課題解決を奨励し,学生をコピー・アンド・プロンプト・アプローチから遠ざける方法として,図表やビデオを用いてOOP タスクを定式化する革新的な手法を提案する。
論文 参考訳(メタデータ) (2024-03-13T10:21:29Z) - Students' Perceptions and Preferences of Generative Artificial
Intelligence Feedback for Programming [15.372316943507506]
そこで我々はChatGPT APIを用いて,導入型コンピュータサイエンスクラスにおける4つの実験室割り当てのための自動フィードバックを生成した。
学生は、フィードバックは、Shuteが確立した形式的なフィードバックガイドラインとよく一致していると感じた。
学生は通常、十分なコード例で特定の修正フィードバックを期待していたが、フィードバックのトーンについて意見が分かれていた。
論文 参考訳(メタデータ) (2023-12-17T22:26:53Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
大規模言語モデル(LLM)は、多くの自然言語タスクに対する強力で一般的な解決策として登場した。
しかしながら、言語生成の最も重要なアプリケーションの多くは対話的であり、エージェントは望ましい結果に達するために相手と話し合わなければならない。
本研究では,そのような目標指向対話に対して,RLでLLMを適応させる新しい手法について検討する。
論文 参考訳(メタデータ) (2023-11-09T18:45:16Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
本稿では,新しいモデルと効果的なトレーニング戦略の両方を含む完全なビデオキャプションシステムを提案する。
具体的には,オブジェクトリレーショナルグラフ(ORG)に基づくエンコーダを提案する。
一方,教師推薦学習(TRL)手法を設計し,成功した外部言語モデル(ELM)をフル活用し,豊富な言語知識をキャプションモデルに統合する。
論文 参考訳(メタデータ) (2020-02-26T15:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。