論文の概要: Panoptic Segmentation and Labelling of Lumbar Spine Vertebrae using Modified Attention Unet
- arxiv url: http://arxiv.org/abs/2404.18291v1
- Date: Sun, 28 Apr 2024 19:35:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 15:16:10.552241
- Title: Panoptic Segmentation and Labelling of Lumbar Spine Vertebrae using Modified Attention Unet
- Title(参考訳): 修正アテンションUnetを用いた腰椎椎間板のパノプティック・セグメンテーションとラベリング
- Authors: Rikathi Pal, Priya Saha, Somoballi Ghoshal, Amlan Chakrabarti, Susmita Sur-Kolay,
- Abstract要約: 腰椎の3次元スライスMRIデータのパノプティカルセグメンテーションのための改良型注意U-Netアーキテクチャを提案する。
本手法は,新しいマスキングロジックを取り入れた99.5%の精度を実現する。
- 参考スコア(独自算出の注目度): 2.8730926763860687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation and labeling of vertebrae in MRI images of the spine are critical for the diagnosis of illnesses and abnormalities. These steps are indispensable as MRI technology provides detailed information about the tissue structure of the spine. Both supervised and unsupervised segmentation methods exist, yet acquiring sufficient data remains challenging for achieving high accuracy. In this study, we propose an enhancing approach based on modified attention U-Net architecture for panoptic segmentation of 3D sliced MRI data of the lumbar spine. Our method achieves an impressive accuracy of 99.5\% by incorporating novel masking logic, thus significantly advancing the state-of-the-art in vertebral segmentation and labeling. This contributes to more precise and reliable diagnosis and treatment planning.
- Abstract(参考訳): 脊椎MRI画像における椎骨の分画とラベル付けは、疾患や異常の診断に重要である。
MRI技術は脊椎の組織構造に関する詳細な情報を提供するので、これらのステップは不可欠である。
教師なしセグメンテーション法と教師なしセグメンテーション法の両方が存在するが、高い精度を達成するために十分なデータを取得することは依然として困難である。
本研究では, 腰椎の3次元スライスMRIデータのパノプティックセグメンテーションのための改良型注意U-Netアーキテクチャに基づく拡張アプローチを提案する。
本手法は,新しいマスキングロジックを取り入れた99.5\%の精度を達成し,脊椎セグメンテーションとラベル付けの最先端化を実現した。
これはより正確で信頼性の高い診断と治療計画に寄与する。
関連論文リスト
- Pioneering Precision in Lumbar Spine MRI Segmentation with Advanced Deep Learning and Data Enhancement [0.0]
本研究では、クラス不均衡やデータ前処理といった重要な課題に対処することに焦点を当てる。
腰痛患者のMRI検査は、脊椎、脊椎、椎間板(IVD)の3つの重要な分類を正確に表現するために、精査的に前処理されている
改良されたU-Netモデルは、リークされたRectified Linear Units (ReLU)とGrorotの一様初期化器を備えたアップサンプルブロックを含む革新的なアーキテクチャ拡張を含んでいる。
論文 参考訳(メタデータ) (2024-09-09T19:22:17Z) - SpineMamba: Enhancing 3D Spinal Segmentation in Clinical Imaging through Residual Visual Mamba Layers and Shape Priors [10.431439196002842]
本研究では,3次元脊髄データの深部意味的特徴と長距離空間依存性をモデル化するための残留視覚的マンバ層を提案する。
また, 医療画像から脊椎の解剖学的情報を抽出する新規な脊髄形状先行モジュールを提案する。
SpineMambaはセグメンテーション性能が優れており、最大2ポイントを超える。
論文 参考訳(メタデータ) (2024-08-28T15:59:40Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
本稿では,各脊椎の剛性と容積を保存し,登録精度を最大化しながら,弱教師付き深層学習フレームワークを提案する。
また,CTにおける椎体自動分節化はMRIと対比してより正確な結果をもたらすため,CTラベルマップのみに依存するよう,これらの損失を特に設計する。
以上の結果から, 解剖学的認識による損失の増大は, 精度を維持しつつも, 推測変換の妥当性を高めることが示唆された。
論文 参考訳(メタデータ) (2022-05-16T10:59:55Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Simulating Realistic MRI variations to Improve Deep Learning model and
visual explanations using GradCAM [0.0]
修正されたHighRes3DNetモデルを用いて、脳MRIボリュームランドマーク検出問題を解く。
Grad-CAMは、モデルがフォーカスしている領域を示す粗いローカライゼーションマップを生成する。
論文 参考訳(メタデータ) (2021-11-01T11:14:23Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Stacked Hourglass Network with a Multi-level Attention Mechanism: Where
to Look for Intervertebral Disc Labeling [2.3848738964230023]
椎間板の位置と骨格構造を協調的に学習する多レベルアテンション機構を有する重畳時間ガラスネットワークを提案する。
提案した深層学習モデルは意味的セグメンテーションの強さとポーズ推定手法を考慮し,欠落した領域と偽陽性検出を扱う。
論文 参考訳(メタデータ) (2021-08-14T14:53:27Z) - Automatic Vertebra Localization and Identification in CT by Spine
Rectification and Anatomically-constrained Optimization [23.84364494308767]
本論文では脊椎の解剖学的知識を利用して椎骨の局在と同定を容易にする堅牢かつ正確な方法を提案する。
キーポイント局在モデルは、脊椎中心の活性化マップを作成するために訓練される。
その後、脊椎中心線に沿って再サンプリングされ、脊椎切除された活性化マップを生成し、さらに1-D活性化信号に集約される。
解剖学的に制約された最適化モジュールを導入し、連続する椎骨指数の椎骨と硬い制約の間の距離を調節するソフト制約の下で最適な椎骨中心を共同で探索する。
論文 参考訳(メタデータ) (2020-12-14T21:26:48Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
脊椎MRIにおける脊椎の発見と同定のための新しい畳み込み法を提案する。
これには学習ベクトル場を使用して、検出された脊椎の角を個別の脊椎にまとめる。
本手法の臨床的有用性を示すために, 腰部, 脊柱管内MRスキャンにおける側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側
論文 参考訳(メタデータ) (2020-07-06T09:37:12Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。