論文の概要: SpineMamba: Enhancing 3D Spinal Segmentation in Clinical Imaging through Residual Visual Mamba Layers and Shape Priors
- arxiv url: http://arxiv.org/abs/2408.15887v1
- Date: Wed, 28 Aug 2024 15:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 15:31:11.268108
- Title: SpineMamba: Enhancing 3D Spinal Segmentation in Clinical Imaging through Residual Visual Mamba Layers and Shape Priors
- Title(参考訳): SpineMamba:残像マンバ層と形状前駆体による臨床像における3次元スピナルセグメンテーションの促進
- Authors: Zhiqing Zhang, Tianyong Liu, Guojia Fan, Bin Li, Qianjin Feng, Shoujun Zhou,
- Abstract要約: 本研究では,3次元脊髄データの深部意味的特徴と長距離空間依存性をモデル化するための残留視覚的マンバ層を提案する。
また, 医療画像から脊椎の解剖学的情報を抽出する新規な脊髄形状先行モジュールを提案する。
SpineMambaはセグメンテーション性能が優れており、最大2ポイントを超える。
- 参考スコア(独自算出の注目度): 10.431439196002842
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate segmentation of 3D clinical medical images is critical in the diagnosis and treatment of spinal diseases. However, the inherent complexity of spinal anatomy and uncertainty inherent in current imaging technologies, poses significant challenges for semantic segmentation of spinal images. Although convolutional neural networks (CNNs) and Transformer-based models have made some progress in spinal segmentation, their limitations in handling long-range dependencies hinder further improvements in segmentation accuracy.To address these challenges, we introduce a residual visual Mamba layer to effectively capture and model the deep semantic features and long-range spatial dependencies of 3D spinal data. To further enhance the structural semantic understanding of the vertebrae, we also propose a novel spinal shape prior module that captures specific anatomical information of the spine from medical images, significantly enhancing the model's ability to extract structural semantic information of the vertebrae. Comparative and ablation experiments on two datasets demonstrate that SpineMamba outperforms existing state-of-the-art models. On the CT dataset, the average Dice similarity coefficient for segmentation reaches as high as 94.40, while on the MR dataset, it reaches 86.95. Notably, compared to the renowned nnU-Net, SpineMamba achieves superior segmentation performance, exceeding it by up to 2 percentage points. This underscores its accuracy, robustness, and excellent generalization capabilities.
- Abstract(参考訳): 脊椎疾患の診断と治療には, 正確な3次元臨床像分割が重要である。
しかし、現在の画像技術に固有の脊髄解剖学固有の複雑さと不確実性は、脊髄画像のセマンティックセグメンテーションに重大な課題をもたらす。
畳み込みニューラルネットワーク(CNN)とトランスフォーマーモデル(Transformer-based model)は、脊髄のセグメンテーションにおいて多少進歩しているが、長距離依存を扱う際の制限は、セグメンテーション精度のさらなる向上を妨げている。
また, 脊椎の構造的意味理解を深めるために, 医療画像から脊椎の特定の解剖学的情報を抽出し, 脊椎の構造的意味情報を抽出する能力を大幅に向上する, 新規な脊椎前方モジュールを提案する。
2つのデータセットの比較およびアブレーション実験は、SpineMambaが既存の最先端モデルより優れていることを示している。
CTデータセットでは、セグメンテーションの平均Dice類似度係数は94.40に達し、MRデータセットでは86.95に達する。
特に、有名なnnU-Netと比較して、SpineMambaはセグメンテーション性能が優れ、最大で2ポイントを超える。
これにより、その正確性、堅牢性、および優れた一般化能力が裏付けられる。
関連論文リスト
- UniCoN: Universal Conditional Networks for Multi-Age Embryonic Cartilage Segmentation with Sparsely Annotated Data [13.379161180001303]
骨軟骨異形成症は、新生児の2-3%に影響を及ぼし、骨と軟骨の障害の集団である。
この病気に関する現在の研究は、胚性マウスの3DマイクロCT画像において、発育する軟骨を正確にセグメント化することを含んでいる。
本研究では, 軟骨形状変化の正確な表現を可能にするために, 個別の年齢区分と連続的な画像作物位置の2つの新しいメカニズムを提案する。
論文 参考訳(メタデータ) (2024-10-16T21:06:55Z) - Towards Synergistic Deep Learning Models for Volumetric Cirrhotic Liver Segmentation in MRIs [1.5228650878164722]
世界的死亡の主な原因である肝硬変は、効果的な疾患モニタリングと治療計画のためにROIを正確に区分する必要がある。
既存のセグメンテーションモデルは、複雑な機能インタラクションをキャプチャして、さまざまなデータセットをまたいだ一般化に失敗することが多い。
本稿では、補間潜在空間を拡張的特徴相互作用モデリングに活用する新しい相乗論的理論を提案する。
論文 参考訳(メタデータ) (2024-08-08T14:41:32Z) - Panoptic Segmentation and Labelling of Lumbar Spine Vertebrae using Modified Attention Unet [2.8730926763860687]
腰椎の3次元スライスMRIデータのパノプティカルセグメンテーションのための改良型注意U-Netアーキテクチャを提案する。
本手法は,新しいマスキングロジックを取り入れた99.5%の精度を実現する。
論文 参考訳(メタデータ) (2024-04-28T19:35:00Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - VertDetect: Fully End-to-End 3D Vertebral Instance Segmentation Model [0.0]
本稿では,完全自動3次元脊椎椎体分割畳み込みニューラルネットワーク(CNN)モデルであるVertDetectを提案する。
共有CNNバックボーンの利用は、脊髄と脊椎の両方のレベル情報を含む特徴マップを備えたネットワークの検出とセグメンテーションのブランチを提供する。
このモデルは、エンド・ツー・エンドのアーキテクチャにおいて最先端のパフォーマンスを達成し、その設計により、その後下流のタスクに使用できる機能の抽出が容易になる。
論文 参考訳(メタデータ) (2023-11-16T15:29:21Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Semi-Supervised Hybrid Spine Network for Segmentation of Spine MR Images [14.190504802866288]
半教師付き複合脊椎ネットワーク (SSHSNet) という2段階のアルゴリズムを提案し, 同時椎体 (VBs) と椎間板 (IVDs) のセグメンテーションを実現する。
まず,2次元半監督型DeepLabv3+をクロス擬似監督を用いて構築し,スライス内特徴と粗いセグメンテーションを得た。
2段目では、3Dフル解像度のパッチベースのDeepLabv3+がスライス間情報を抽出するために構築された。
その結果,提案手法はデータ不均衡問題に対処する上で大きな可能性を秘めていることがわかった。
論文 参考訳(メタデータ) (2022-03-23T02:57:14Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。