Mixture-of-Instructions: Aligning Large Language Models via Mixture Prompting
- URL: http://arxiv.org/abs/2404.18410v2
- Date: Wed, 05 Feb 2025 06:56:47 GMT
- Title: Mixture-of-Instructions: Aligning Large Language Models via Mixture Prompting
- Authors: Bowen Xu, Shaoyu Wu, Kai Liu, Lulu Hu,
- Abstract summary: We introduce a novel technique termed Mixture-of-Instructions (MoI)
MoI employs a strategy of instruction packing combined with diverse system prompts to boost the alignment efficiency of language models.
Our methodology was applied to the open-source Qwen-7B-chat model, culminating in the development of Qwen-SFT-MoI.
- Score: 7.103987978402038
- License:
- Abstract: With the proliferation of large language models (LLMs), the comprehensive alignment of such models across multiple tasks has emerged as a critical area of research. Existing alignment methodologies primarily address single task, such as multi-turn dialogue, coding, mathematical problem-solving, and tool usage. Although there is a large amount of high-quality data available for those tasks, most of them provide only questions and answers without including the system prompt. Though a detailed analysis of the Qwen language model, we found that the system prompt has a significant impact on both training and inference processes of LLM. We attributes this phenomenon to overfitting to the system prompt. In address this issue, we introduce a novel technique termed Mixture-of-Instructions (MoI), which employs a strategy of instruction packing combined with diverse system prompts to boost the alignment efficiency of language models. We have also compiled a diverse set of seven benchmark datasets to rigorously evaluate the alignment efficacy of the MoI-enhanced language model. Our methodology was applied to the open-source Qwen-7B-chat model, culminating in the development of Qwen-SFT-MoI. This enhanced model demonstrates significant advancements in generative capabilities across coding, mathematics, and tool use tasks.
Related papers
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - Bactrainus: Optimizing Large Language Models for Multi-hop Complex Question Answering Tasks [5.439505575097552]
We evaluate the ability of large language models in performing domain-specific tasks using the HotpotQA dataset.
This task serves as a challenging benchmark for assessing the language comprehension capabilities of these models.
The results of the study show that the integration of large language models with these techniques can lead to up to a 4% improvement in F1 score for finding answers.
arXiv Detail & Related papers (2025-01-10T18:44:06Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation.
We generate high-quality sentence embeddings from Large Language Models without the need for model fine-tuning.
Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.
arXiv Detail & Related papers (2024-02-28T16:35:52Z) - Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond [16.913115978881866]
We propose a framework for unified task embeddings (FUTE), task embeddings from various models, including smaller language models and Large Language Models with varied prompts, within a single vector space.
Such uniformity enables comparison and analysis of similarities amongst different models, broadening the scope and utility of existing task embedding methods in multi-model scenarios.
arXiv Detail & Related papers (2024-02-22T13:13:31Z) - Making Small Language Models Better Multi-task Learners with
Mixture-of-Task-Adapters [13.6682552098234]
Large Language Models (LLMs) have achieved amazing zero-shot learning performance over a variety of Natural Language Processing (NLP) tasks.
We present ALTER, a system that effectively builds the multi-tAsk learners with mixTure-of-task-adaptERs upon small language models.
A two-stage training method is proposed to optimize the collaboration between adapters at a small computational cost.
arXiv Detail & Related papers (2023-09-20T03:39:56Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - JiuZhang 2.0: A Unified Chinese Pre-trained Language Model for
Multi-task Mathematical Problem Solving [77.51817534090789]
We propose textbfJiuZhang2.0, a unified Chinese PLM specially for multi-task mathematical problem solving.
Our idea is to maintain a moderate-sized model and employ the emphcross-task knowledge sharing to improve the model capacity in a multi-task setting.
arXiv Detail & Related papers (2023-06-19T15:45:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.