論文の概要: Multi-modal Perception Dataset of In-water Objects for Autonomous Surface Vehicles
- arxiv url: http://arxiv.org/abs/2404.18411v1
- Date: Mon, 29 Apr 2024 04:00:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 14:46:41.770506
- Title: Multi-modal Perception Dataset of In-water Objects for Autonomous Surface Vehicles
- Title(参考訳): 自動車用水中物体のマルチモーダル知覚データセット
- Authors: Mingi Jeong, Arihant Chadda, Ziang Ren, Luyang Zhao, Haowen Liu, Monika Roznere, Aiwei Zhang, Yitao Jiang, Sabriel Achong, Samuel Lensgraf, Alberto Quattrini Li,
- Abstract要約: 本稿では,自律航法のためのマルチモーダル認識データセットについて紹介する。
自律型表面車両(ASV)の環境意識を高めるため、水中環境における水中障害物に焦点を当てている。
- 参考スコア(独自算出の注目度): 10.732732686425308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the first publicly accessible multi-modal perception dataset for autonomous maritime navigation, focusing on in-water obstacles within the aquatic environment to enhance situational awareness for Autonomous Surface Vehicles (ASVs). This dataset, consisting of diverse objects encountered under varying environmental conditions, aims to bridge the research gap in marine robotics by providing a multi-modal, annotated, and ego-centric perception dataset, for object detection and classification. We also show the applicability of the proposed dataset's framework using deep learning-based open-source perception algorithms that have shown success. We expect that our dataset will contribute to development of the marine autonomy pipeline and marine (field) robotics. Please note this is a work-in-progress paper about our on-going research that we plan to release in full via future publication.
- Abstract(参考訳): 本稿では,水環境における水中障害物に着目し,自律型表面車両 (ASV) の状況認識を高めることを目的とした,自律海洋航法用マルチモーダル認識データセットについて紹介する。
このデータセットは、様々な環境条件下で遭遇する多様な物体で構成されており、物体の検出と分類のために、マルチモーダル、注釈付き、エゴ中心の知覚データセットを提供することにより、海洋ロボット研究のギャップを埋めることを目的としている。
また、ディープラーニングに基づくオープンソースの認識アルゴリズムを用いて、提案したデータセットフレームワークの適用性を示す。
われわれのデータセットは、海洋自律パイプラインと海洋(フィールド)ロボティクスの開発に貢献することを期待している。
この記事は、現在進行中の研究に関する、今後の出版を通じて完全なリリースを予定している、進行中の論文です。
関連論文リスト
- Introducing VaDA: Novel Image Segmentation Model for Maritime Object Segmentation Using New Dataset [3.468621550644668]
海上輸送産業はコンピュータビジョン人工知能(AI)の進歩によって急速に進化している
海洋環境における物体認識は、光の反射、干渉、激しい照明、様々な気象条件といった課題に直面します。
既存のAI認識モデルとデータセットは、自律ナビゲーションシステムを構成するのに限定的に適している。
論文 参考訳(メタデータ) (2024-07-12T05:48:53Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
このレビューは、70以上のオープンソースの自動運転データセットを体系的に評価する。
高品質なデータセットの作成の基礎となる原則など、さまざまな側面に関する洞察を提供する。
また、解決を保障する科学的、技術的課題も検討している。
論文 参考訳(メタデータ) (2023-12-06T10:46:53Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Enhancing Navigation Benchmarking and Perception Data Generation for
Row-based Crops in Simulation [0.3518016233072556]
本稿では,セマンティックセグメンテーションネットワークを学習するための合成データセットと,ナビゲーションアルゴリズムを高速に評価するための仮想シナリオのコレクションを提案する。
異なるフィールドジオメトリと特徴を探索するための自動パラメトリック手法が開発されている。
シミュレーションフレームワークとデータセットは、異なる作物のディープセグメンテーションネットワークをトレーニングし、その結果のナビゲーションをベンチマークすることで評価されている。
論文 参考訳(メタデータ) (2023-06-27T14:46:09Z) - Edge-guided Representation Learning for Underwater Object Detection [15.832646455660278]
水中物体検出は海洋経済の発展、環境保護、惑星の持続可能な開発に不可欠である。
このタスクの主な課題は、低コントラスト、小さな物体、水生生物の模倣である。
本稿では,識別的表現学習とアグリゲーションの実現を目的としたエッジ誘導型表現学習ネットワークERL-Netを提案する。
論文 参考訳(メタデータ) (2023-06-01T08:29:44Z) - Survey of Deep Learning for Autonomous Surface Vehicles in the Marine
Environment [15.41166179659646]
今後数年以内に、幅広い用途で利用できる高度な自動運転技術が提供される予定だ。
本稿では,ASV関連分野におけるディープラーニング(DL)手法の実装に関する既存研究について検討する。
論文 参考訳(メタデータ) (2022-10-16T08:46:17Z) - BEyond observation: an approach for ObjectNav [0.0]
我々は,センサデータ融合と最先端機械学習アルゴリズムが,ビジュアルセマンティックナビゲーション(Visual Semantic Navigation)と呼ばれるEmbodied Artificial Intelligence (E-AI)タスクをどのように実行できるかを探索する。
このタスクは、エゴセントリックな視覚的観察を用いて、環境に関する事前の知識なしに、対象のセマンティッククラスに属するオブジェクトに到達するための自律ナビゲーションで構成されている。
提案手法は,ミニバル相とテストスタンダード相のHabitat Challenge 2021 ObjectNavで4位に達した。
論文 参考訳(メタデータ) (2021-06-21T19:27:16Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
人間のように3Dエンボディ環境のどこからでも言語ガイドされたターゲットに向かって移動する能力は、インテリジェントロボットの「聖杯」目標の1つです。
ほとんどのビジュアルナビゲーションベンチマークは、ステップバイステップの詳細な命令セットに導かれ、固定された出発点から目標に向かって移動することに焦点を当てている。
このアプローチは、人間だけが物体とその周囲がどのように見えるかを説明する現実世界の問題から逸脱し、ロボットにどこからでも航行を依頼する。
論文 参考訳(メタデータ) (2021-03-31T15:01:04Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
本研究は,未確認環境における対象カテゴリーのインスタンスにナビゲートするオブジェクトゴールナビゲーションの問題を研究する。
本稿では,表層的なセマンティックマップを構築し,効率的に環境を探索する「ゴール指向セマンティック探索」というモジュールシステムを提案する。
論文 参考訳(メタデータ) (2020-07-01T17:52:32Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。