論文の概要: Enhancing Navigation Benchmarking and Perception Data Generation for
Row-based Crops in Simulation
- arxiv url: http://arxiv.org/abs/2306.15517v1
- Date: Tue, 27 Jun 2023 14:46:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 13:12:55.207719
- Title: Enhancing Navigation Benchmarking and Perception Data Generation for
Row-based Crops in Simulation
- Title(参考訳): シミュレーションによる系統作物のナビゲーションベンチマークと知覚データ生成の強化
- Authors: Mauro Martini, Andrea Eirale, Brenno Tuberga, Marco Ambrosio, Andrea
Ostuni, Francesco Messina, Luigi Mazzara, Marcello Chiaberge
- Abstract要約: 本稿では,セマンティックセグメンテーションネットワークを学習するための合成データセットと,ナビゲーションアルゴリズムを高速に評価するための仮想シナリオのコレクションを提案する。
異なるフィールドジオメトリと特徴を探索するための自動パラメトリック手法が開発されている。
シミュレーションフレームワークとデータセットは、異なる作物のディープセグメンテーションネットワークをトレーニングし、その結果のナビゲーションをベンチマークすることで評価されている。
- 参考スコア(独自算出の注目度): 0.3518016233072556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Service robotics is recently enhancing precision agriculture enabling many
automated processes based on efficient autonomous navigation solutions.
However, data generation and infield validation campaigns hinder the progress
of large-scale autonomous platforms. Simulated environments and deep visual
perception are spreading as successful tools to speed up the development of
robust navigation with low-cost RGB-D cameras. In this context, the
contribution of this work is twofold: a synthetic dataset to train deep
semantic segmentation networks together with a collection of virtual scenarios
for a fast evaluation of navigation algorithms. Moreover, an automatic
parametric approach is developed to explore different field geometries and
features. The simulation framework and the dataset have been evaluated by
training a deep segmentation network on different crops and benchmarking the
resulting navigation.
- Abstract(参考訳): service roboticsは最近、効率的な自律ナビゲーションソリューションに基づいた多くの自動化プロセスを可能にする精密農業を強化している。
しかし、データ生成と内界検証は大規模な自律プラットフォームの発展を妨げる。
シミュレーション環境と深い視覚知覚は、低コストのRGB-Dカメラによる堅牢なナビゲーションの開発をスピードアップする成功ツールとして普及している。
この文脈では、この研究の貢献は2つある: ナビゲーションアルゴリズムを高速に評価するための仮想シナリオの集合とともに、深いセマンティックセグメンテーションネットワークを訓練する合成データセットである。
さらに、異なるフィールドジオメトリや特徴を探索するための自動パラメトリックアプローチも開発されている。
シミュレーションフレームワークとデータセットは、異なる作物の深いセグメンテーションネットワークをトレーニングし、その結果のナビゲーションをベンチマークすることで評価されている。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Real-time Multi-view Omnidirectional Depth Estimation System for Robots and Autonomous Driving on Real Scenes [9.073031720400401]
ロボットと車両の両方の現実シナリオにおけるナビゲーションと障害物回避のための全方位深度推定システムとそれに対応するアルゴリズムを提案する。
実時間全方位深度推定を実現するために,球面スイーシング法とモデルアーキテクチャを併用したRtHexa-OmniMVSアルゴリズムを提案する。
提案アルゴリズムは,屋内および屋外の両方で複雑な実世界のシナリオにおいて高い精度を示し,エッジコンピューティングプラットフォーム上で15fpsの推論速度を実現する。
論文 参考訳(メタデータ) (2024-09-12T08:44:35Z) - Navigating the Human Maze: Real-Time Robot Pathfinding with Generative Imitation Learning [0.0]
目標条件付き自己回帰モデルを導入し,個人間の複雑な相互作用を捉える。
このモデルは、潜在的なロボット軌道サンプルを処理し、周囲の個人の反応を予測する。
論文 参考訳(メタデータ) (2024-08-07T14:32:41Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Improved LiDAR Odometry and Mapping using Deep Semantic Segmentation and
Novel Outliers Detection [1.0334138809056097]
高速移動プラットフォームのためのLOAMアーキテクチャに基づくリアルタイムLiDARオドメトリーとマッピングのための新しいフレームワークを提案する。
本フレームワークは,ディープラーニングモデルによって生成された意味情報を用いて,ポイント・ツー・ラインとポイント・ツー・プレーンのマッチングを改善する。
高速動作に対するLiDARオドメトリーのロバスト性に及ぼすマッチング処理の改善効果について検討した。
論文 参考訳(メタデータ) (2024-03-05T16:53:24Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - Image-based Navigation in Real-World Environments via Multiple Mid-level
Representations: Fusion Models, Benchmark and Efficient Evaluation [13.207579081178716]
近年の学習に基づくナビゲーション手法では,エージェントのシーン理解とナビゲーション能力が同時に実現されている。
残念ながら、シミュレーターがナビゲーションポリシーを訓練する効率的なツールであるとしても、現実の世界に移動すると、結果のモデルは失敗することが多い。
可能な解決策の1つは、シーンの重要なドメイン不変性を含む中間レベルの視覚表現を備えたナビゲーションモデルを提供することである。
論文 参考訳(メタデータ) (2022-02-02T15:00:44Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - Deep Semantic Segmentation at the Edge for Autonomous Navigation in
Vineyard Rows [0.0]
精密農業は、農業プロセスに安価で効果的な自動化を導入することを目的としている。
提案する制御は,機械認識技術とエッジAI技術の最新技術を活用して,ブドウ畑の列内における高精度で信頼性の高いナビゲーションを実現する。
制御アルゴリズム自体によって生成されたセグメンテーションマップは、作物の状態の植物性評価のためのフィルタとして直接利用することができる。
論文 参考訳(メタデータ) (2021-07-01T18:51:58Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。