Harnessing the Power of Reinforcement Learning for Language-Model-Based Information Retriever via Query-Document Co-Augmentation
- URL: http://arxiv.org/abs/2506.18670v1
- Date: Mon, 23 Jun 2025 14:14:43 GMT
- Title: Harnessing the Power of Reinforcement Learning for Language-Model-Based Information Retriever via Query-Document Co-Augmentation
- Authors: Jingming Liu, Yumeng Li, Wei Shi, Yao-Xiang Ding, Hui Su, Kun Zhou,
- Abstract summary: Large Language Models (LLMs) can be used to augment both user queries and corpus documents.<n>We present an LLM-based retriever empowered to augment both user queries and corpus documents.<n>Our approach significantly enhances LLM-based retrieval performance in both sparse and dense settings.
- Score: 35.70731674603417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies have proposed leveraging Large Language Models (LLMs) as information retrievers through query rewriting. However, for challenging corpora, we argue that enhancing queries alone is insufficient for robust semantic matching; the LLM should also have sufficient understanding of the corpus by directly handling and augmenting the documents themselves. To this end, we present an LLM-based retriever empowered to augment both user queries and corpus documents, with its policy fully explored via reinforcement learning (RL) and minimal human inductive bias. Notably, we find that simply allowing the LLM to modify documents yields little benefit unless paired with our carefully designed bidirectional RL framework, which enables the LLM to simultaneously learn and collaborate on both query and document augmentation policies. A key technical challenge in realizing such a framework lies in jointly updating both policies during training, where the rewards for the two directions depend on each other, making their entangled reward intractable. Our approach addresses this by introducing a reward sampling strategy and a specifically designed RL algorithm that enables effective training with these sampled rewards. Experimental results demonstrate that our approach significantly enhances LLM-based retrieval performance in both sparse and dense settings, particularly in difficult retrieval domains, and achieves strong cross-benchmark generalization. Our code is released at https://github.com/liujm2001/CoAugRetriever.
Related papers
- Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - RALLRec+: Retrieval Augmented Large Language Model Recommendation with Reasoning [22.495874056980824]
We propose Representation learning and textbfReasoning empowered retrieval-textbfAugmented textbfLarge textbfLanguage model textbfRecommendation (RALLRec+).
arXiv Detail & Related papers (2025-03-26T11:03:34Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - ExpandR: Teaching Dense Retrievers Beyond Queries with LLM Guidance [21.777817032607405]
Large language models (LLMs) have demonstrated significant potential in enhancing dense retrieval through query augmentation.<n>In this work, we propose ExpandR, a unified LLM-augmented dense retrieval framework.<n> Experimental results on multiple benchmarks show that ExpandR consistently outperforms strong baselines.
arXiv Detail & Related papers (2025-02-24T11:15:41Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
We propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus.
The retrieval system harnesses both dense text embedding and sparse bag-of-words representations.
arXiv Detail & Related papers (2024-04-29T04:51:30Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Effective Large Language Model Adaptation for Improved Grounding and Citation Generation [48.07830615309543]
This paper focuses on improving large language models (LLMs) by grounding their responses in retrieved passages and by providing citations.
We propose a new framework, AGREE, that improves the grounding from a holistic perspective.
Our framework tunes LLMs to selfground the claims in their responses and provide accurate citations to retrieved documents.
arXiv Detail & Related papers (2023-11-16T03:22:25Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline.
This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs.
arXiv Detail & Related papers (2023-05-23T17:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.