論文の概要: HFT: Half Fine-Tuning for Large Language Models
- arxiv url: http://arxiv.org/abs/2404.18466v1
- Date: Mon, 29 Apr 2024 07:07:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 14:36:46.001489
- Title: HFT: Half Fine-Tuning for Large Language Models
- Title(参考訳): HFT:大規模言語モデルのためのハーフファインチューニング
- Authors: Tingfeng Hui, Zhenyu Zhang, Shuohuan Wang, Weiran Xu, Yu Sun, Hua Wu,
- Abstract要約: 1つ以上の微調整フェーズを持つ大規模言語モデル(LLM)は、様々な機能をアンロックするために必要なステップとなっている。
本稿では,部分的パラメータを定期的にリセットすることで,LLMが元の知識の一部を復元できることを見出した。
本稿では,LLM 用ハーフファインチューニング (HFT) をフルファインチューニング (FFT) の代替として導入し,忘れる問題を緩和する。
- 参考スコア(独自算出の注目度): 42.60438623804577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) with one or more fine-tuning phases have become a necessary step to unlock various capabilities, enabling LLMs to follow natural language instructions or align with human preferences. However, it carries the risk of catastrophic forgetting during sequential training, the parametric knowledge or the ability learned in previous stages may be overwhelmed by incoming training data. In this paper, we find that by regularly resetting partial parameters, LLMs can restore some of the original knowledge. Inspired by this, we introduce Half Fine-Tuning (HFT) for LLMs, as a substitute for full fine-tuning (FFT), to mitigate the forgetting issues, where half of the parameters are selected to learn new tasks while the other half are frozen to remain previous knowledge. We provide a feasibility analysis from the perspective of optimization and interpret the parameter selection operation as a regularization term. Without changing the model architecture, HFT could be seamlessly integrated into existing fine-tuning frameworks. Extensive experiments and analysis on supervised fine-tuning, direct preference optimization, and continual learning consistently demonstrate the effectiveness, robustness, and efficiency of HFT. Compared with FFT, HFT not only significantly alleviates the forgetting problem, but also achieves the best performance in a series of downstream benchmarks, with an approximately 30% reduction in training time.
- Abstract(参考訳): 1つ以上の微調整フェーズを持つ大規模言語モデル(LLM)は、様々な機能をアンロックするために必要なステップとなり、LLMは自然言語命令に従うか、人間の好みに合わせることができるようになった。
しかし、逐次訓練中に破滅的な忘れ傷を負う危険性があり、パラメトリック知識や前段で学んだ能力は、入力されたトレーニングデータに圧倒される可能性がある。
本稿では,部分的パラメータを定期的にリセットすることで,LLMが元の知識の一部を復元できることを見出した。
そこで本研究では,LLM のためのハーフファインチューニング (HFT) をフルファインチューニング (FFT) の代替として導入し,新しいタスクを学習するためにパラメータの半数が選択され,残りの半分が凍結して以前の知識を保ちながら忘れる問題を緩和する。
最適化の観点から実現可能性分析を行い、パラメータ選択操作を正規化項として解釈する。
モデルアーキテクチャを変更することなく、HFTは既存の微調整フレームワークにシームレスに統合できる。
教師付き微調整、直接選好最適化、連続学習に関する広範な実験と分析は、HFTの有効性、堅牢性、効率性を一貫して示している。
FFTと比較して、HFTは忘れる問題を著しく軽減するだけでなく、トレーニング時間を約30%削減し、一連のダウンストリームベンチマークで最高のパフォーマンスを達成する。
関連論文リスト
- SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe [30.03925858123481]
従来のNTPパラダイムを超えて,命令チューニング性能を高める新しいレシピであるSFTMixを提案する。
トレーニング力学に基づいて、異なる信頼度を持つ例は、指導訓練過程において異なる役割を演じるべきであると論じる。
このアプローチにより、SFTMixは、幅広いインストラクションフォローとヘルスケアドメイン固有のSFTタスクにおいて、NTPを大幅に上回ることができる。
論文 参考訳(メタデータ) (2024-10-07T17:52:21Z) - PAFT: A Parallel Training Paradigm for Effective LLM Fine-Tuning [17.73193523921637]
大規模言語モデル(LLM)は、多様な自然言語処理(NLP)タスクにおいて顕著な能力を示している。
LLMは通常、制御された微調整(SFT)を行い、その後、下流のアプリケーションで使用できるように調整する。
本稿では,PLMファインチューニングのための新しいPArallelトレーニングパラダイムであるPAFTを紹介する。
論文 参考訳(メタデータ) (2024-06-25T20:11:37Z) - Gradient-Mask Tuning Elevates the Upper Limits of LLM Performance [51.36243421001282]
Gradient-Mask Tuning (GMT) は、勾配情報に基づいてトレーニング中のパラメータを選択的に更新する手法である。
実験により, GMTは従来の微調整法に勝るだけでなく, LLM性能の上限も高めることを示した。
論文 参考訳(メタデータ) (2024-06-21T17:42:52Z) - Intuitive Fine-Tuning: Towards Simplifying Alignment into a Single Process [26.196705232699884]
直感的ファインチューニング(IFT)を導入し,SFTと優先度最適化をひとつのプロセスに統合する。
IFTは、SFTのシーケンシャルなレシピやいくつかの典型的なPreference Optimizationメソッドと相容れないか、それ以上に優れている。
説明可能なフロズンレイクゲームは、競争政策を得るためのIFTの有効性をさらに検証する。
論文 参考訳(メタデータ) (2024-05-20T08:23:28Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
本研究では,異なるスケールでの事前学習と微調整の結果を近似する分布から,エミュレート・ファインチューニング(EFT)を原理的かつ実用的なサンプリング法として導入する。
EFTは、追加トレーニングを伴わずに、有益性や無害性といった競合する行動特性をテスト時間で調整できることを示す。
最後に、LMアップスケーリングと呼ばれるエミュレートされたファインチューニングの特殊な場合において、小さなファインチューニングモデルと組み合わせることで、大きな事前学習モデルのリソース集約的なファインチューニングを回避する。
論文 参考訳(メタデータ) (2023-10-19T17:57:16Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
既存の微調整法は、事前訓練されたモデルの全てのパラメータ(フル微調整)をチューニングするか、最後の線形層(線形プローブ)のみをチューニングする。
そこで本研究では,SSFと呼ばれるパラメータ効率の高いファインタニング手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T08:14:49Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
ICL (Few-shot in-context Learning) は、予測を行うたびにトレーニング例を全て処理するので、かなりの計算、メモリ、ストレージコストを発生させる。
パラメータ効率の良い微調整は、モデルの新たなタスクの実行を可能にするために、小さなパラメータセットをトレーニングする、代替パラダイムを提供する。
本稿では,少数ショットICLとパラメータ効率の微調整を厳密に比較し,後者が計算コストを劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-05-11T17:10:41Z) - A Fast and Efficient Conditional Learning for Tunable Trade-Off between
Accuracy and Robustness [11.35810118757863]
クリーンかつ逆摂動画像上でのSOTA(State-of-the-art)性能を実現する既存のモデルは、FiLM(Feature-wise linear modulation)層を条件とした畳み込み操作に依存している。
既存のFiLMベースの条件付けの代わりに、付加層を必要としない独特な重み付き学習を行うFLOATアルゴリズムを提案する。
特に、重みテンソルにスケールドノイズを加え、クリーンな性能と対向的な性能のトレードオフを可能にする。
論文 参考訳(メタデータ) (2022-03-28T19:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。