論文の概要: PAFT: A Parallel Training Paradigm for Effective LLM Fine-Tuning
- arxiv url: http://arxiv.org/abs/2406.17923v1
- Date: Tue, 25 Jun 2024 20:11:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 15:17:27.271447
- Title: PAFT: A Parallel Training Paradigm for Effective LLM Fine-Tuning
- Title(参考訳): PAFT: LLMファインチューニングのための並列トレーニングパラダイム
- Authors: Shiva Kumar Pentyala, Zhichao Wang, Bin Bi, Kiran Ramnath, Xiang-Bo Mao, Regunathan Radhakrishnan, Sitaram Asur, Na, Cheng,
- Abstract要約: 大規模言語モデル(LLM)は、多様な自然言語処理(NLP)タスクにおいて顕著な能力を示している。
LLMは通常、制御された微調整(SFT)を行い、その後、下流のアプリケーションで使用できるように調整する。
本稿では,PLMファインチューニングのための新しいPArallelトレーニングパラダイムであるPAFTを紹介する。
- 参考スコア(独自算出の注目度): 17.73193523921637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown remarkable abilities in diverse natural language processing (NLP) tasks. The LLMs generally undergo supervised fine-tuning (SFT) followed by preference alignment to be usable in downstream applications. However, this sequential training pipeline leads to alignment tax that degrades the LLM performance. This paper introduces PAFT, a new PArallel training paradigm for effective LLM Fine-Tuning, which independently performs SFT and preference alignment (e.g., DPO and ORPO, etc.) with the same pre-trained model on respective datasets. The model produced by SFT and the model from preference alignment are then merged into a final model by parameter fusing for use in downstream applications. This work reveals important findings that preference alignment like DPO naturally results in a sparse model while SFT leads to a natural dense model which needs to be sparsified for effective model merging. This paper introduces an effective interference resolution which reduces the redundancy by sparsifying the delta parameters. The LLM resulted from the new training paradigm achieved Rank #1 on the HuggingFace Open LLM Leaderboard. Comprehensive evaluation shows the effectiveness of the parallel training paradigm.
- Abstract(参考訳): 大規模言語モデル(LLM)は、多様な自然言語処理(NLP)タスクにおいて顕著な能力を示している。
LLMは一般に、制御された微調整(SFT)を行い、その後、下流のアプリケーションで使用できるように設定アライメントを施している。
しかし、このシーケンシャルなトレーニングパイプラインは、LCMのパフォーマンスを低下させるアライメント税につながる。
本稿では,SFT と選好アライメント(例えば DPO や ORPO など)を各データセット上で同一の事前学習モデルで独立に行う,実効 LLM ファインチューニングのための新しい PArallel トレーニングパラダイムである PAFT を紹介する。
SFTが生成したモデルと選好アライメントからのモデルは、下流アプリケーションでの使用のためにパラメータ拡散によって最終モデルにマージされる。
本研究は、DPOのような嗜好アライメントが自然にスパースモデルをもたらすのに対して、SFTは効果的なモデルマージのためにスパース化する必要がある自然な密集モデルをもたらすという重要な知見を明らかにする。
本稿では,デルタパラメータをスペーシングすることで冗長性を低減できる効果的な干渉分解法を提案する。
LLMはHuggingFace Open LLM Leaderboardで1位を獲得した。
総合的な評価は、並列トレーニングパラダイムの有効性を示す。
関連論文リスト
- Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - Minor SFT loss for LLM fine-tune to increase performance and reduce model deviation [9.506166330956082]
最適化されたモデルと元のモデルとの差分を測定するためのSFTのトレーニング指標と、トレーニングの有効性を高めることができる損失関数MinorSFTを提案する。
本稿では,DPO と MinorDPO の知見を得て,最適化モデルとオリジナルモデルとの差分を測定するための SFT のトレーニング指標と,トレーニングの有効性を高めることができる損失関数 MinorSFT を提案する。
論文 参考訳(メタデータ) (2024-08-20T08:32:44Z) - Extend Model Merging from Fine-Tuned to Pre-Trained Large Language Models via Weight Disentanglement [72.97553348776425]
我々は、FTからPT LLMへのマージ技術の適用性を拡大するための先駆的な取り組みを行っている。
WeIght DisENtanglement (WIDEN) に基づくアプローチを導入し、マージ範囲を効果的に拡張する。
Qwen1.5-Chat (FT LLM with instruction-following skills) と Sailor (PT LLM with multilingual abilities) を7Bおよび14Bモデルスケールにマージする。
論文 参考訳(メタデータ) (2024-08-06T10:46:46Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
空間保存型大規模言語モデルのための効率的な微調整法
コードはhttps://github.com/Lucky-Lance/SPP.comで公開される。
論文 参考訳(メタデータ) (2024-05-25T04:55:27Z) - Weak-to-Strong Extrapolation Expedites Alignment [135.12769233630362]
モデルと人間の嗜好との整合性を高めるために,ExPOと呼ばれる手法を提案する。
ExPOは市販のDPO/RLHFモデルを一貫して改善することを示した。
我々は、アライメントトレーニング中に学んだ報酬信号を増幅するExPOの本質に光を当てた。
論文 参考訳(メタデータ) (2024-04-25T17:39:50Z) - GPTA: Generative Prompt Tuning Assistant for Synergistic Downstream Neural Network Enhancement with LLMs [11.572835837392867]
本研究はGPTA(Large Language Model assistance training framework)を導入し,プレフィックスプロンプトによる下流タスクモデルのトレーニングを強化する。
LLMのデータ露出を最小限にすることで、下流タスクモデルトレーニングにLLMを適用する際のセキュリティと法的課題に対処する。
論文 参考訳(メタデータ) (2024-03-29T23:04:04Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
本稿では,集中型LCMと下流エミュレータ間でトランスフォーマブロックを転送する代表的手法であるOffsite-Tuning(OFT)に焦点を当てる。
これらの観測にインスパイアされたCRaShは、LCMから改善エミュレータを導出するトレーニングフリー戦略であるClustering、Removing、Sharingを含む。
以上の結果から,CRaShとOFTの有効性が明らかとなった。
論文 参考訳(メタデータ) (2023-10-24T03:08:58Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。