論文の概要: Bridging Data Barriers among Participants: Assessing the Potential of Geoenergy through Federated Learning
- arxiv url: http://arxiv.org/abs/2404.18527v1
- Date: Mon, 29 Apr 2024 09:12:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 14:17:13.847421
- Title: Bridging Data Barriers among Participants: Assessing the Potential of Geoenergy through Federated Learning
- Title(参考訳): 参加者間のデータバリアのブリッジ:フェデレートラーニングによるジオエネルギの可能性の評価
- Authors: Weike Peng, Jiaxin Gao, Yuntian Chen, Shengwei Wang,
- Abstract要約: 本研究では,XGBoostモデルに基づく新しい連邦学習(FL)フレームワークを提案する。
FLモデルは、異なるモデルと比較して精度と一般化能力が優れていることを示す。
本研究は, 協調型・プライバシー保護型FL技術により, 従来と異なる貯水池を評価するための新たな道を開くものである。
- 参考スコア(独自算出の注目度): 2.8498944632323755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning algorithms emerge as a promising approach in energy fields, but its practical is hindered by data barriers, stemming from high collection costs and privacy concerns. This study introduces a novel federated learning (FL) framework based on XGBoost models, enabling safe collaborative modeling with accessible yet concealed data from multiple parties. Hyperparameter tuning of the models is achieved through Bayesian Optimization. To ascertain the merits of the proposed FL-XGBoost method, a comparative analysis is conducted between separate and centralized models to address a classical binary classification problem in geoenergy sector. The results reveal that the proposed FL framework strikes an optimal balance between privacy and accuracy. FL models demonstrate superior accuracy and generalization capabilities compared to separate models, particularly for participants with limited data or low correlation features and offers significant privacy benefits compared to centralized model. The aggregated optimization approach within the FL agreement proves effective in tuning hyperparameters. This study opens new avenues for assessing unconventional reservoirs through collaborative and privacy-preserving FL techniques.
- Abstract(参考訳): 機械学習アルゴリズムは、エネルギー分野において有望なアプローチとして出現するが、その実践はデータ障壁によって妨げられている。
本研究では、XGBoostモデルに基づく新しいフェデレーション学習(FL)フレームワークを導入し、複数のパーティからアクセス可能で隠蔽されたデータによる安全な協調モデリングを可能にする。
モデルのハイパーパラメータチューニングはベイズ最適化によって達成される。
提案するFL-XGBoost法の有効性を確認するため,地エネルギーセクターにおける古典的二項分類問題に対処するため,分離モデルと集中モデルの比較分析を行った。
その結果,提案するFLフレームワークは,プライバシと精度のバランスが最適であることが判明した。
FLモデルは、特に限られたデータや低相関機能を持つ参加者に対して、別々のモデルよりも精度と一般化能力が優れており、集中型モデルと比較して大きなプライバシー上の利点がある。
FL合意における集約最適化アプローチは、ハイパーパラメータのチューニングに有効である。
本研究は, 協調型・プライバシー保護型FL技術により, 従来と異なる貯水池を評価するための新たな道を開くものである。
関連論文リスト
- CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
相関2値量子化を用いて差分プライバシーを実現するプライバシー機構であるCorBin-FLを導入する。
また,PLDP,ユーザレベル,サンプルレベルの中央差分プライバシー保証に加えて,AugCorBin-FLも提案する。
論文 参考訳(メタデータ) (2024-09-20T00:23:44Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
フェデレートラーニング(FL)は、分散クライアントがデータのプライバシを保持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
本稿では,モデル収束とFLシステム全体の性能を改善するために,CP-CFL(Contrative Pre-training-based Clustered Federated Learning)を提案する。
論文 参考訳(メタデータ) (2023-11-28T05:44:26Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
論文 参考訳(メタデータ) (2023-05-29T22:51:40Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Knowledge Distillation for Federated Learning: a Practical Guide [8.2791533759453]
フェデレートラーニング(FL)は、センシティブな生データを集中的に収集することなく、ディープラーニングモデルのトレーニングを可能にする。
FLの最もよく使われるアルゴリズムはパラメータに基づくスキーム(フェデレート平均化など)である。
我々は、特定のFL問題に適したKDベースのアルゴリズムのレビューを行う。
論文 参考訳(メタデータ) (2022-11-09T08:31:23Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Federated Ensemble Model-based Reinforcement Learning in Edge Computing [21.840086997141498]
フェデレートラーニング(Federated Learning、FL)は、プライバシ保護のための分散機械学習パラダイムである。
モデルベースRLとアンサンブル知識蒸留をFLに効果的に組み込む新しいFRLアルゴリズムを提案する。
具体的には、FLと知識蒸留を利用して、クライアント向けの動的モデルのアンサンブルを作成し、環境と相互作用することなく、単にアンサンブルモデルを使用することでポリシーを訓練する。
論文 参考訳(メタデータ) (2021-09-12T16:19:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。