論文の概要: Time Series Data Augmentation as an Imbalanced Learning Problem
- arxiv url: http://arxiv.org/abs/2404.18537v1
- Date: Mon, 29 Apr 2024 09:27:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 14:17:13.825686
- Title: Time Series Data Augmentation as an Imbalanced Learning Problem
- Title(参考訳): 不均衡学習問題としての時系列データ拡張
- Authors: Vitor Cerqueira, Nuno Moniz, Ricardo Inácio, Carlos Soares,
- Abstract要約: 我々は、オーバーサンプリング戦略を用いて、合成時系列観測を作成し、予測モデルの精度を向上させる。
5502個の単変量時系列を含む7種類のデータベースを用いて実験を行った。
提案手法は,グローバルモデルとローカルモデルの両方で優れており,この2つのアプローチのトレードオフが良好であることがわかった。
- 参考スコア(独自算出の注目度): 2.5536554335016417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent state-of-the-art forecasting methods are trained on collections of time series. These methods, often referred to as global models, can capture common patterns in different time series to improve their generalization performance. However, they require large amounts of data that might not be readily available. Besides this, global models sometimes fail to capture relevant patterns unique to a particular time series. In these cases, data augmentation can be useful to increase the sample size of time series datasets. The main contribution of this work is a novel method for generating univariate time series synthetic samples. Our approach stems from the insight that the observations concerning a particular time series of interest represent only a small fraction of all observations. In this context, we frame the problem of training a forecasting model as an imbalanced learning task. Oversampling strategies are popular approaches used to deal with the imbalance problem in machine learning. We use these techniques to create synthetic time series observations and improve the accuracy of forecasting models. We carried out experiments using 7 different databases that contain a total of 5502 univariate time series. We found that the proposed solution outperforms both a global and a local model, thus providing a better trade-off between these two approaches.
- Abstract(参考訳): 近年の最先端予測手法は時系列の収集に基づいて訓練されている。
これらの手法は、しばしばグローバルモデルと呼ばれ、異なる時系列の共通パターンをキャプチャして一般化性能を向上させることができる。
しかし、簡単には利用できない大量のデータが必要である。
これに加えて、グローバルモデルは特定の時系列に固有の関連するパターンをキャプチャできないことがある。
このような場合、データ拡張は時系列データセットのサンプルサイズを増やすのに役立ちます。
この研究の主な貢献は、単変量時系列合成サンプルを生成する新しい方法である。
我々のアプローチは、特定の時系列に関する観測は、すべての観測のごく一部しか表現していないという洞察から来ています。
この文脈では,予測モデルを不均衡な学習課題として訓練する際の問題点を考察する。
オーバーサンプリング戦略は、機械学習の不均衡問題に対処するために使われる一般的なアプローチである。
これらの手法を用いて、合成時系列観測を作成し、予測モデルの精度を向上させる。
5502個の単変量時系列を含む7種類のデータベースを用いて実験を行った。
提案手法は,グローバルモデルとローカルモデルの両方で優れており,この2つのアプローチのトレードオフが良好であることがわかった。
関連論文リスト
- StreamEnsemble: Predictive Queries over Spatiotemporal Streaming Data [0.8437187555622164]
本稿では,時間的(ST)データ分布上の予測クエリに対する新しいアプローチであるStreamEnemblesを提案する。
実験により,本手法は従来のアンサンブル手法や単一モデル手法よりも精度と時間で優れていたことが明らかとなった。
論文 参考訳(メタデータ) (2024-09-30T23:50:16Z) - Context Neural Networks: A Scalable Multivariate Model for Time Series Forecasting [5.5711773076846365]
実世界の時系列は、しばしば孤立して取得できない複雑な相互依存性を示す。
本稿では,時系列モデルに関連性のある文脈洞察を付加する,効率的な線形複雑化手法であるContext Neural Networkを紹介する。
論文 参考訳(メタデータ) (2024-05-12T00:21:57Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronosは事前訓練された確率的時系列モデルのためのフレームワークである。
クロノスモデルでは,様々な領域の時系列データを利用して,未知の予測タスクにおけるゼロショット精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-03-12T16:53:54Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - AutoFITS: Automatic Feature Engineering for Irregular Time Series [0.44198435146063353]
不規則な時系列では、各観測が収集される時間はデータのダイナミクスを要約し、予測性能を向上させるのに役立つ。
我々は,各インスタンスが収集された際に,この視点から情報を抽出することに焦点を当てた,新しい自動機能エンジニアリングフレームワークを開発する。
時系列予測ワークフローに組み込むことによって,この情報の価値を検証し,時系列予測のための最新手法との比較や補完方法について検討する。
論文 参考訳(メタデータ) (2021-12-29T19:42:48Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
自動回帰(AR)や季節ARのような単純なデータ生成プロセス(DGP)からカオスロジスティックマップ、自己興奮型閾値自動回帰、マッキーグラス方程式といった複雑なDGPまで、時系列をシミュレートする。
データセットの長さと系列数は、さまざまなシナリオで変化します。
我々はこれらのデータセットに対して,Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) Model, Light Gradient Boosting Models (LGBM)などの大域的予測モデルを用いて実験を行った。
論文 参考訳(メタデータ) (2020-12-23T04:45:52Z) - Learning from Irregularly-Sampled Time Series: A Missing Data
Perspective [18.493394650508044]
不規則にサンプリングされた時系列は、医療を含む多くの領域で発生する。
連続だが観測されていない関数からサンプリングされた指数値対の列として、不規則にサンプリングされた時系列データをモデル化する。
本稿では,変分オートエンコーダと生成対向ネットワークに基づく学習手法を提案する。
論文 参考訳(メタデータ) (2020-08-17T20:01:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。