論文の概要: Deep Autoregressive Models with Spectral Attention
- arxiv url: http://arxiv.org/abs/2107.05984v1
- Date: Tue, 13 Jul 2021 11:08:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-14 14:52:56.443991
- Title: Deep Autoregressive Models with Spectral Attention
- Title(参考訳): スペクトル注意を伴う深い自己回帰モデル
- Authors: Fernando Moreno-Pino, Pablo M. Olmos and Antonio Art\'es-Rodr\'iguez
- Abstract要約: 本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
- 参考スコア(独自算出の注目度): 74.08846528440024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting is an important problem across many domains, playing
a crucial role in multiple real-world applications. In this paper, we propose a
forecasting architecture that combines deep autoregressive models with a
Spectral Attention (SA) module, which merges global and local frequency domain
information in the model's embedded space. By characterizing in the spectral
domain the embedding of the time series as occurrences of a random process, our
method can identify global trends and seasonality patterns. Two spectral
attention models, global and local to the time series, integrate this
information within the forecast and perform spectral filtering to remove time
series's noise. The proposed architecture has a number of useful properties: it
can be effectively incorporated into well-know forecast architectures,
requiring a low number of parameters and producing interpretable results that
improve forecasting accuracy. We test the Spectral Attention Autoregressive
Model (SAAM) on several well-know forecast datasets, consistently demonstrating
that our model compares favorably to state-of-the-art approaches.
- Abstract(参考訳): 時系列予測は、多くのドメインにおいて重要な問題であり、複数の現実世界アプリケーションにおいて重要な役割を果たす。
本稿では,深部自己回帰モデルとスペクトルアテンション(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
提案するアーキテクチャは、よく知られた予測アーキテクチャに効果的に組み込むことができ、パラメータを少なくし、予測精度を向上させる解釈可能な結果を生成することができる。
我々は、いくつかのよく知られた予測データセット上で、スペクトル注意自己回帰モデル(SAAM)をテストする。
関連論文リスト
- Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - Learning Pattern-Specific Experts for Time Series Forecasting Under Patch-level Distribution Shift [30.581736814767606]
時系列予測は、過去のデータに基づいて将来の価値を予測することを目的としている。
実世界の時間はしばしば、季節、動作条件、意味的な意味など、セグメントごとに異なるパターンを持つ複雑な非一様分布を示す。
本稿では,より正確で適応可能な時系列予測のために,パターン特化の専門家を活用した新しいアーキテクチャbftextSを提案する。
論文 参考訳(メタデータ) (2024-10-13T13:35:29Z) - Local Attention Mechanism: Boosting the Transformer Architecture for Long-Sequence Time Series Forecasting [8.841114905151152]
局所注意機構 (LAM) は時系列解析に適した効率的な注意機構である。
LAMは時系列の連続性特性を利用して計算された注目点数を減少させる。
時間とメモリO(nlogn)で動作する代数テンソルにLAMを実装するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T11:32:02Z) - SpectralEarth: Training Hyperspectral Foundation Models at Scale [47.93167977587301]
ハイパースペクトル基礎モデルの事前学習を目的とした大規模マルチ時間データセットであるSpectralEarthを紹介する。
我々は、最先端の自己教師付き学習(SSL)アルゴリズムを用いて、SpectralEarthの一連の基礎モデルを事前訓練する。
我々は、土地被覆と収穫型マッピングのための4つの下流データセットを構築し、モデル評価のためのベンチマークを提供する。
論文 参考訳(メタデータ) (2024-08-15T22:55:59Z) - TimeSieve: Extracting Temporal Dynamics through Information Bottlenecks [31.10683149519954]
本稿では,時系列予測モデルTimeSieveを提案する。
提案手法では、ウェーブレット変換を用いて時系列データを前処理し、マルチスケールの特徴を効果的にキャプチャする。
本研究は,時系列予測における課題に対処するためのアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2024-06-07T15:58:12Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data [33.0546525587517]
RPMixer と呼ばれる全MLP時系列予測アーキテクチャを提案する。
提案手法は,各ブロックがアンサンブルモデルにおいてベース学習者のように振る舞う深層ニューラルネットワークのアンサンブル的挙動に乗じる。
論文 参考訳(メタデータ) (2024-02-16T07:28:59Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full
Version [37.09531298150374]
同じ時系列パターンの複雑な時系列パターンが時間によって異なる可能性があるため、トラフィックシリーズの予測は困難である。
このような時間的モデルは、時間的位置と時間的期間に関わらず、共有パラメータ空間を使用し、時間的相関は場所間で類似しており、常に時間にわたって保持するわけではないと仮定する。
サブテンポラリモデルにICDを意識したモデルをエンコードするフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T16:44:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。