Scheme for braiding Majorana zero modes in vortices using an STT-matrix
- URL: http://arxiv.org/abs/2404.18578v3
- Date: Sun, 25 Aug 2024 04:35:00 GMT
- Title: Scheme for braiding Majorana zero modes in vortices using an STT-matrix
- Authors: Guangyao Huang, Xinfang Zhang, Xiaofeng Yi, Jibang Fu, Weichen Wang, Mingtang Deng,
- Abstract summary: We propose a potential braiding scheme based on a spintronic device matrix.
By programming the ON/OFF states of the spintronic devices within the STT-matrix, it becomes possible to manipulate vortices hosting MZMs.
Our findings demonstrate that this system exhibits high versatility and flexibility in manipulating vortices.
- Score: 3.27836284296967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently conducted experiments on two-dimensional topological superconductors have revealed various indications of Majorana zero modes (MZMs). However, progress in the manipulation of MZM braiding has been limited, impeding the realization of topological quantum computing. In this study, we propose a potential braiding scheme based on a spintronic device matrix. This scheme involves utilizing a matrix composed of spin-transfer torque devices (STT-matrix) alongside a two-dimensional topological superconductor material. By programming the ON/OFF states of the spintronic devices within the STT-matrix, it becomes possible to manipulate vortices hosting MZMs in the two-dimensional topological superconductor. To further investigate this concept, we construct a time-dependent Ginzburg-Landau model and perform numerical simulations to analyze vortex-driving dynamics, MZM braiding processes, and MZM fusion phenomena. Our findings demonstrate that this system exhibits high versatility and flexibility in manipulating vortices. With advancements in spintronic device technology, our proposed scheme offers a feasible and practical method for operating MZMs within vortices present in topological superconductors.
Related papers
- Quantum Advancements in Neutron Scattering Reshape Spintronic Devices [0.0]
Topological magnetism has sparked an unprecedented age in quantum technologies.
Topological magnets have motivated a new generation of spintronic devices which transcend the limits of conventional semiconductor-based electronics.
arXiv Detail & Related papers (2024-07-15T15:36:03Z) - Local control and mixed dimensions: Exploring high-temperature superconductivity in optical lattices [0.8453109131640921]
Local control and optical bilayer capabilities combined with spatially resolved measurements create a versatile toolbox.
We show how coherent pairing correlations can be accessed in a partially particle-hole transformed and rotated basis.
Finally, we introduce a scheme to measure momentum-resolved dopant densities, providing access to observables complementary to solid-state experiments.
arXiv Detail & Related papers (2024-06-04T17:59:45Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Enhanced tripartite interactions in spin-magnon-mechanical hybrid
systems [0.0]
We predict a tripartite coupling mechanism in a hybrid setup comprising a single NV center and a micromagnet.
We propose to realize direct and strong tripartite interactions among single NV spins, magnons and phonons via modulating the relative motion between the NV center and the micromagnet.
arXiv Detail & Related papers (2023-01-25T06:31:27Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Topological lattices realized in superconducting circuit optomechanics [0.0]
We show that it is possible to directly measure the mode functions of hybridized modes without using any local probe.
Such optomechanical lattices offer an avenue to explore collective, quantum many-body, and quench dynamics.
arXiv Detail & Related papers (2021-11-17T14:13:52Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Detecting and Distinguishing Majorana Zero Modes with the Scanning
Tunneling Microscope [0.0]
Majorana zero modes (MZM) are predicted to emerge as localized zero energy states at the ends of one-dimensional topological superconductors.
The scanning tunneling microscope (STM) has played a key role in the search for experimental signatures of these novel quasi-particles.
The power of high-resolution STM techniques is perhaps best illustrated by their application in identifying MZM in one-dimensional chains of magnetic atoms on the surface of a superconductor.
arXiv Detail & Related papers (2021-03-24T14:13:39Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Exact representations of many body interactions with RBM neural networks [77.34726150561087]
We exploit the representation power of RBMs to provide an exact decomposition of many-body contact interactions into one-body operators.
This construction generalizes the well known Hirsch's transform used for the Hubbard model to more complicated theories such as Pionless EFT in nuclear physics.
arXiv Detail & Related papers (2020-05-07T15:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.