Human Factors in Model-Driven Engineering: Future Research Goals and Initiatives for MDE
- URL: http://arxiv.org/abs/2404.18682v1
- Date: Mon, 29 Apr 2024 13:27:20 GMT
- Title: Human Factors in Model-Driven Engineering: Future Research Goals and Initiatives for MDE
- Authors: Grischa Liebel, Jil Klünder, Regina Hebig, Christopher Lazik, Inês Nunes, Isabella Graßl, Jan-Philipp Steghöfer, Joeri Exelmans, Julian Oertel, Kai Marquardt, Katharina Juhnke, Kurt Schneider, Lucas Gren, Lucia Happe, Marc Herrmann, Marvin Wyrich, Matthias Tichy, Miguel Goulão, Rebekka Wohlrab, Reyhaneh Kalantari, Robert Heinrich, Sandra Greiner, Satrio Adi Rukmono, Shalini Chakraborty, Silvia Abrahão, Vasco Amaral,
- Abstract summary: We discuss topics related to human factors in modelling during a GI-Dagstuhl seminar.
Five topics were covered in depth, namely modelling human aspects, factors of modeller experience, diversity and inclusion in MDE, collaboration and MDE, and teaching human-aware MDE.
- Score: 15.661925949062843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: Software modelling and Model-Driven Engineering (MDE) is traditionally studied from a technical perspective. However, one of the core motivations behind the use of software models is inherently human-centred. Models aim to enable practitioners to communicate about software designs, make software understandable, or make software easier to write through domain-specific modelling languages. Several recent studies challenge the idea that these aims can always be reached and indicate that human factors play a role in the success of MDE. However, there is an under-representation of research focusing on human factors in modelling. Methods: During a GI-Dagstuhl seminar, topics related to human factors in modelling were discussed by 26 expert participants from research and industry. Results: In breakout groups, five topics were covered in depth, namely modelling human aspects, factors of modeller experience, diversity and inclusion in MDE, collaboration and MDE, and teaching human-aware MDE. Conclusion: We summarise our insights gained during the discussions on the five topics. We formulate research goals, questions, and propositions that support directing future initiatives towards an MDE community that is aware of and supportive of human factors and values.
Related papers
- Human-Centric Foundation Models: Perception, Generation and Agentic Modeling [79.97999901785772]
Human-centric Foundation Models unify diverse human-centric tasks into a single framework.
We present a comprehensive overview of HcFMs by proposing a taxonomy that categorizes current approaches into four groups.
This survey aims to serve as a roadmap for researchers and practitioners working towards more robust, versatile, and intelligent digital human and embodiments modeling.
arXiv Detail & Related papers (2025-02-12T16:38:40Z) - Affective Computing Has Changed: The Foundation Model Disruption [47.88090382507161]
We aim to raise awareness of the power of Foundation Models in the field of Affective Computing.
We synthetically generate and analyse multimodal affective data, focusing on vision, linguistics, and speech (acoustics)
We discuss some fundamental problems, such as ethical issues and regulatory aspects, related to the use of Foundation Models in this research area.
arXiv Detail & Related papers (2024-09-13T15:20:18Z) - Trends, Applications, and Challenges in Human Attention Modelling [65.61554471033844]
Human attention modelling has proven to be particularly useful for understanding the cognitive processes underlying visual exploration.
It provides support to artificial intelligence models that aim to solve problems in various domains, including image and video processing, vision-and-language applications, and language modelling.
arXiv Detail & Related papers (2024-02-28T19:35:30Z) - A Survey of Reasoning with Foundation Models [235.7288855108172]
Reasoning plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation.
We introduce seminal foundation models proposed or adaptable for reasoning.
We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models.
arXiv Detail & Related papers (2023-12-17T15:16:13Z) - Bridging MDE and AI: A Systematic Review of Domain-Specific Languages and Model-Driven Practices in AI Software Systems Engineering [1.4853133497896698]
This study aims to investigate the existing model-driven approaches relying on DSL in support of the engineering of AI software systems.
The use of MDE for AI is still in its early stages, and there is no single tool or method that is widely used.
arXiv Detail & Related papers (2023-07-10T14:38:38Z) - A Review on Machine Theory of Mind [16.967933605635203]
Theory of Mind (ToM) is the ability to attribute mental states to others, the basis of human cognition.
In this paper, we review recent progress in machine ToM on beliefs, desires, and intentions.
arXiv Detail & Related papers (2023-03-21T04:58:47Z) - Foundation Models for Decision Making: Problems, Methods, and
Opportunities [124.79381732197649]
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks.
New paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning.
Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems.
arXiv Detail & Related papers (2023-03-07T18:44:07Z) - Mimetic Models: Ethical Implications of AI that Acts Like You [5.843033621853535]
An emerging theme in artificial intelligence research is the creation of models to simulate the decisions and behavior of specific people.
We develop a framework for characterizing the ethical and social issues raised by their growing availability.
arXiv Detail & Related papers (2022-07-19T16:41:36Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.