A diverse set of two-qubit gates for spin qubits in semiconductor quantum dots
- URL: http://arxiv.org/abs/2404.18689v1
- Date: Mon, 29 Apr 2024 13:37:43 GMT
- Title: A diverse set of two-qubit gates for spin qubits in semiconductor quantum dots
- Authors: Ming Ni, Rong-Long Ma, Zhen-Zhen Kong, Ning Chu, Sheng-Kai Zhu, Chu Wang, Ao-Ran Li, Wei-Zhu Liao, Gang Cao, Gui-Lei Wang, Guang-Can Guo, Xuedong Hu, Hai-Ou Li, Guo-Ping Guo,
- Abstract summary: We propose and verify a fast composite two-qubit gate scheme to extend the available two-qubit gate types.
Our gate scheme limits the parameter requirements of all essential two-qubit gates to a common JDeltaE_Z region.
With this versatile composite gate scheme, broad-spectrum two-qubit operations allow us to efficiently utilize the hardware and the underlying physics resources.
- Score: 5.228819198411081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To realize large-scale quantum information processes, an ideal scheme for two-qubit operations should enable diverse operations with given hardware and physical interaction. However, for spin qubits in semiconductor quantum dots, the common two-qubit operations, including CPhase gates, SWAP gates, and CROT gates, are realized with distinct parameter regions and control waveforms, posing challenges for their simultaneous implementation. Here, taking advantage of the inherent Heisenberg interaction between spin qubits, we propose and verify a fast composite two-qubit gate scheme to extend the available two-qubit gate types as well as reduce the requirements for device properties. Apart from the formerly proposed CPhase (controlled-phase) gates and SWAP gates, theoretical results indicate that the iSWAP-family gate and Fermionic simulation (fSim) gate set are additionally available for spin qubits. Meanwhile, our gate scheme limits the parameter requirements of all essential two-qubit gates to a common J~{\Delta}E_Z region, facilitate the simultaneous realization of them. Furthermore, we present the preliminary experimental demonstration of the composite gate scheme, observing excellent match between the measured and simulated results. With this versatile composite gate scheme, broad-spectrum two-qubit operations allow us to efficiently utilize the hardware and the underlying physics resources, helping accelerate and broaden the scope of the upcoming noise intermediate-scale quantum (NISQ) computing.
Related papers
- A SWAP Gate for Spin Qubits in Silicon [5.6151418663848744]
We show a fast SWAP gate with a duration of 25 ns based on quantum dots in isotopically enriched silicon.
We calibrate the single-qubit local phases during the SWAP gate by incorporating single-qubit gates in our circuit.
These results pave the way for high fidelity SWAP gates, and processes based on them, such as quantum communication on chip and quantum simulation.
arXiv Detail & Related papers (2023-10-10T15:24:15Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Fast and Robust Geometric Two-Qubit Gates for Superconducting Qubits and
beyond [0.0]
We propose a scheme to realize robust geometric two-qubit gates in multi-level qubit systems.
Our scheme is substantially simpler than STIRAP-based gates that have been proposed for atomic platforms.
We show how our gate can be accelerated using a shortcuts-to-adiabaticity approach.
arXiv Detail & Related papers (2022-08-08T16:22:24Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Fast multi-qubit gates through simultaneous two-qubit gates [0.5949967357689445]
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity.
One way to overcome these limitations is to expand the available gate set from single- and two-qubit gates to multi-qubit gates.
We show that such multi-qubit gates can be realized by the simultaneous application of multiple two-qubit gates to a group of qubits.
arXiv Detail & Related papers (2021-08-25T17:24:31Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable
coupler [40.456646238780195]
Two-qubit gates at scale are a key requirement to realize the full promise of quantum computation and simulation.
We present a systematic approach that goes beyond the dispersive approximation to exploit the engineered level structure of the coupler and optimize its control.
We experimentally demonstrate CZ and $ZZ$-free iSWAP gates with two-qubit interaction fidelities of $99.76 pm 0.07$% and $99.87 pm 0.23$%, respectively.
arXiv Detail & Related papers (2020-11-02T19:09:43Z) - Parallel entangling gate operations and two-way quantum communication in
spin chains [0.0]
We propose a protocol to parallelize the implementation of two-qubit entangling gates.
The proposed protocol can serve for realizing two-way quantum communication.
arXiv Detail & Related papers (2020-08-28T17:50:38Z) - Benchmarking the noise sensitivity of different parametric two-qubit
gates in a single superconducting quantum computing platform [0.0]
A larger hardware-native gate set may decrease the number of required gates, provided that all gates are realized with high fidelity.
We benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a parametrically driven tunable coupler.
We argue that spurious $ZZ$-type couplings are the dominant error source for the iSWAP gate.
arXiv Detail & Related papers (2020-05-12T11:38:41Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.