Enhancing Multimodal Query Representation via Visual Dialogues for End-to-End Knowledge Retrieval
- URL: http://arxiv.org/abs/2411.08334v1
- Date: Wed, 13 Nov 2024 04:32:58 GMT
- Title: Enhancing Multimodal Query Representation via Visual Dialogues for End-to-End Knowledge Retrieval
- Authors: Yeong-Joon Ju, Ho-Joong Kim, Seong-Whan Lee,
- Abstract summary: We propose an end-to-end multimodal retrieval system, Ret-XKnow, to endow a text retriever with the ability to understand multimodal queries.
To effectively learn multimodal interaction, we also introduce the Visual Dialogue-to-Retrieval dataset automatically constructed from visual dialogue datasets.
We demonstrate that our approach not only significantly improves retrieval performance in zero-shot settings but also achieves substantial improvements in fine-tuning scenarios.
- Score: 26.585985828583304
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing multimodal retrieval systems often rely on disjointed models for image comprehension, such as object detectors and caption generators, leading to cumbersome implementations and training processes. To overcome this limitation, we propose an end-to-end retrieval system, Ret-XKnow, to endow a text retriever with the ability to understand multimodal queries via dynamic modality interaction. Ret-XKnow leverages a partial convolution mechanism to focus on visual information relevant to the given textual query, thereby enhancing multimodal query representations. To effectively learn multimodal interaction, we also introduce the Visual Dialogue-to-Retrieval (ViD2R) dataset automatically constructed from visual dialogue datasets. Our dataset construction process ensures that the dialogues are transformed into suitable information retrieval tasks using a text retriever. We demonstrate that our approach not only significantly improves retrieval performance in zero-shot settings but also achieves substantial improvements in fine-tuning scenarios. Our code is publicly available: https://github.com/yeongjoonJu/Ret_XKnow.
Related papers
- Towards Text-Image Interleaved Retrieval [49.96332254241075]
We introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences.
We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries.
We propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity.
arXiv Detail & Related papers (2025-02-18T12:00:47Z) - Multi-Turn Multi-Modal Question Clarification for Enhanced Conversational Understanding [11.004677535859342]
We introduce the Multi-turn Multi-modal Clarifying Questions (MMCQ) task.
MMCQ combines text and visual modalities to refine user queries in a multi-turn conversation.
We show that multi-turn multi-modal clarification outperforms uni-modal and single-turn approaches, improving MRR by 12.88%.
arXiv Detail & Related papers (2025-02-17T04:58:14Z) - MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs)
We first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks.
Our model, MM-Embed, achieves state-of-the-art performance on the multimodal retrieval benchmark M-BEIR.
arXiv Detail & Related papers (2024-11-04T20:06:34Z) - Hierarchical Multi-modal Transformer for Cross-modal Long Document Classification [74.45521856327001]
How to classify long documents with hierarchical structure texts and embedding images is a new problem.
We propose a novel approach called Hierarchical Multi-modal Transformer (HMT) for cross-modal long document classification.
Our approach uses a multi-modal transformer and a dynamic multi-scale multi-modal transformer to model the complex relationships between image features, and the section and sentence features.
arXiv Detail & Related papers (2024-07-14T07:12:25Z) - Multi-Modal Retrieval For Large Language Model Based Speech Recognition [15.494654232953678]
We propose multi-modal retrieval with two approaches: kNN-LM and cross-attention techniques.
We show that speech-based multi-modal retrieval outperforms text based retrieval.
We achieve state-of-the-art recognition results on the Spoken-Squad question answering dataset.
arXiv Detail & Related papers (2024-06-13T22:55:22Z) - VISTA: Visualized Text Embedding For Universal Multi-Modal Retrieval [10.603148564713518]
We present a new embedding model VISTA for universal multi-modal retrieval.
We introduce a flexible architecture which extends a powerful text encoder with the image understanding capability.
Secondly, we develop two data generation strategies, which bring high-quality composed image-text to facilitate the training of the embedding model.
arXiv Detail & Related papers (2024-06-06T17:37:47Z) - Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models [17.171715290673678]
We propose an interactive image retrieval system capable of refining queries based on user relevance feedback.
This system incorporates a vision language model (VLM) based image captioner to enhance the quality of text-based queries.
To evaluate our system, we curate a new dataset by adapting the MSR-VTT video retrieval dataset to the image retrieval task.
arXiv Detail & Related papers (2024-04-29T14:46:35Z) - Multi-modal Stance Detection: New Datasets and Model [56.97470987479277]
We study multi-modal stance detection for tweets consisting of texts and images.
We propose a simple yet effective Targeted Multi-modal Prompt Tuning framework (TMPT)
TMPT achieves state-of-the-art performance in multi-modal stance detection.
arXiv Detail & Related papers (2024-02-22T05:24:19Z) - DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
We propose a parameter-efficient prompt-tuning method named DialCLIP for multi-modal dialog retrieval.
Our approach introduces a multi-modal context generator to learn context features which are distilled into prompts within the pre-trained vision-language model CLIP.
To facilitate various types of retrieval, we also design multiple experts to learn mappings from CLIP outputs to multi-modal representation space.
arXiv Detail & Related papers (2024-01-02T07:40:12Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries.
We introduce a retriever model ReViz'' that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion.
We demonstrate superior performance in retrieval on two datasets under zero-shot settings.
arXiv Detail & Related papers (2023-06-01T08:04:12Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
We introduce a novel research problem of contextual object detection.
Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering.
We present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts.
arXiv Detail & Related papers (2023-05-29T17:50:33Z) - A Unified Framework for Slot based Response Generation in a Multimodal
Dialogue System [25.17100881568308]
Natural Language Understanding (NLU) and Natural Language Generation (NLG) are the two critical components of every conversational system.
We propose an end-to-end framework with the capability to extract necessary slot values from the utterance.
We employ a multimodal hierarchical encoder using pre-trained DialoGPT to provide a stronger context for both tasks.
arXiv Detail & Related papers (2023-05-27T10:06:03Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
We propose a novel paradigm that uses a textual interface to align external knowledge and eliminate redundant processes.
We demonstrate our paradigm in practice through MultiWOZ-Remake, including an interactive textual interface built for the MultiWOZ database.
arXiv Detail & Related papers (2023-05-23T05:48:21Z) - CISum: Learning Cross-modality Interaction to Enhance Multimodal
Semantic Coverage for Multimodal Summarization [2.461695698601437]
This paper proposes a multi-task cross-modality learning framework (CISum) to improve multimodal semantic coverage.
To obtain the visual semantics, we translate images into visual descriptions based on the correlation with text content.
Then, the visual description and text content are fused to generate the textual summary to capture the semantics of the multimodal content.
arXiv Detail & Related papers (2023-02-20T11:57:23Z) - Named Entity and Relation Extraction with Multi-Modal Retrieval [51.660650522630526]
Multi-modal named entity recognition (NER) and relation extraction (RE) aim to leverage relevant image information to improve the performance of NER and RE.
We propose a novel Multi-modal Retrieval based framework (MoRe)
MoRe contains a text retrieval module and an image-based retrieval module, which retrieve related knowledge of the input text and image in the knowledge corpus respectively.
arXiv Detail & Related papers (2022-12-03T13:11:32Z) - TRIE++: Towards End-to-End Information Extraction from Visually Rich
Documents [51.744527199305445]
This paper proposes a unified end-to-end information extraction framework from visually rich documents.
Text reading and information extraction can reinforce each other via a well-designed multi-modal context block.
The framework can be trained in an end-to-end trainable manner, achieving global optimization.
arXiv Detail & Related papers (2022-07-14T08:52:07Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
In multi-turn dialog, utterances do not always take the full form of sentences.
We propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question.
arXiv Detail & Related papers (2020-12-14T10:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.