Quantum State Designs with Clifford Enhanced Matrix Product States
- URL: http://arxiv.org/abs/2404.18751v2
- Date: Tue, 08 Oct 2024 11:37:40 GMT
- Title: Quantum State Designs with Clifford Enhanced Matrix Product States
- Authors: Guglielmo Lami, Tobias Haug, Jacopo De Nardis,
- Abstract summary: Nonstabilizerness, or magic', is a critical quantum resource that characterizes the non-trivial complexity of quantum states.
We show that Clifford enhanced Matrix Product States ($mathcalC$MPS) can approximate $4$-spherical designs with arbitrary accuracy.
- Score: 0.0
- License:
- Abstract: Nonstabilizerness, or `magic', is a critical quantum resource that, together with entanglement, characterizes the non-classical complexity of quantum states. Here, we address the problem of quantifying the average nonstabilizerness of random Matrix Product States (RMPS). RMPS represent a generalization of random product states featuring bounded entanglement that scales logarithmically with the bond dimension $\chi$. We demonstrate that the $2$-Stabilizer R\'enyi Entropy converges to that of Haar random states as $N/\chi^2$, where $N$ is the system size. This indicates that MPS with a modest bond dimension are as magical as generic states. Subsequently, we introduce the ensemble of Clifford enhanced Matrix Product States ($\mathcal{C}$MPS), built by the action of Clifford unitaries on RMPS. Leveraging our previous result, we show that $\mathcal{C}$MPS can approximate $4$-spherical designs with arbitrary accuracy. Specifically, for a constant $N$, $\mathcal{C}$MPS become close to $4$-designs with a scaling as $\chi^{-2}$. Our findings indicate that combining Clifford unitaries with polynomially complex tensor network states can generate highly non-trivial quantum states.
Related papers
- Universal coarse geometry of spin systems [0.0]
We show that both states and dynamics of a spin system have a canonically associated coarse geometry in the sense of Roe on the set of sites in the thermodynamic limit.
We establish a basic compatibility between the dynamical coarse structure associated to a quantum circuit $alpha$ and the coarse structure of the state $psicirc alpha$ where $psi$ is any product state.
arXiv Detail & Related papers (2024-11-12T16:39:33Z) - Anticoncentration and state design of random tensor networks [0.0]
We investigate quantum random tensor network states where the bond dimensions scalely with the system size, $N$.
For bond dimensions $chi sim gamma N$, we determine the leading order of the associated overlaps probability distribution and demonstrate its convergence to the Porter-Thomas distribution.
We extend this analysis to two-dimensional systems using randomed Project Entangled Pair States (PEPS)
arXiv Detail & Related papers (2024-09-19T18:00:28Z) - Measuring quantum relative entropy with finite-size effect [53.64687146666141]
We study the estimation of relative entropy $D(rho|sigma)$ when $sigma$ is known.
Our estimator attains the Cram'er-Rao type bound when the dimension $d$ is fixed.
arXiv Detail & Related papers (2024-06-25T06:07:20Z) - Efficient unitary designs and pseudorandom unitaries from permutations [35.66857288673615]
We show that products exponentiated sums of $S(N)$ permutations with random phases match the first $2Omega(n)$ moments of the Haar measure.
The heart of our proof is a conceptual connection between the large dimension (large-$N$) expansion in random matrix theory and the method.
arXiv Detail & Related papers (2024-04-25T17:08:34Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Mixed-state quantum anomaly and multipartite entanglement [8.070164241593814]
We show a surprising connection between mixed state entanglement and 't Hooft anomaly.
We generate examples of mixed states with nontrivial long-ranged multipartite entanglement.
We also briefly discuss mixed anomaly involving both strong and weak symmetries.
arXiv Detail & Related papers (2024-01-30T19:00:02Z) - Pseudorandom and Pseudoentangled States from Subset States [49.74460522523316]
A subset state with respect to $S$, a subset of the computational basis, is [ frac1sqrt|S|sum_iin S |irangle.
We show that for any fixed subset size $|S|=s$ such that $s = 2n/omega(mathrmpoly(n))$ and $s=omega(mathrmpoly(n))$, a random subset state is information-theoretically indistinguishable from a Haar random state even provided
arXiv Detail & Related papers (2023-12-23T15:52:46Z) - Approximation Algorithms for Quantum Max-$d$-Cut [42.248442410060946]
The Quantum Max-$d$-Cut problem involves finding a quantum state that maximizes the expected energy associated with the projector onto the antisymmetric subspace of two, $d$-dimensional qudits over all local interactions.
We develop an algorithm that finds product-state solutions of mixed states with bounded purity that achieve non-trivial performance guarantees.
arXiv Detail & Related papers (2023-09-19T22:53:17Z) - Logical Magic State Preparation with Fidelity Beyond the Distillation
Threshold on a Superconducting Quantum Processor [20.66929930736679]
Fault-tolerant quantum computing based on surface code has emerged as an attractive candidate for practical large-scale quantum computers.
We present a hardware-efficient and scalable protocol for arbitrary logical state preparation for the rotated surface code.
We further experimentally implement it on the textitZuchongzhi 2.1 superconducting quantum processor.
arXiv Detail & Related papers (2023-05-25T12:10:59Z) - Matrix product states and the decay of quantum conditional mutual
information [0.16741831494720966]
A uniform matrix product state defined on a tripartite system of spins, denoted by $ABC,$ is shown to be an approximate quantum Markov chain.
The quantum conditional mutual information (QCMI) is investigated and proved to be bounded by a function proportional to $exp(-q(|B|-K)+2K|B|)$, with $q$ and $K$ computable constants.
arXiv Detail & Related papers (2022-11-13T03:03:06Z) - Quantifying nonstabilizerness of matrix product states [0.0]
We show that nonstabilizerness, as quantified by the recently introduced Stabilizer R'enyi Entropies (SREs), can be computed efficiently for matrix product states (MPSs)
We exploit this observation to revisit the study of ground-state nonstabilizerness in the quantum Ising chain, providing accurate numerical results up to large system sizes.
arXiv Detail & Related papers (2022-07-26T17:50:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.