Approximation Algorithms for Quantum Max-$d$-Cut
- URL: http://arxiv.org/abs/2309.10957v2
- Date: Wed, 21 Feb 2024 04:29:01 GMT
- Title: Approximation Algorithms for Quantum Max-$d$-Cut
- Authors: Charlie Carlson, Zackary Jorquera, Alexandra Kolla, Steven Kordonowy,
Stuart Wayland
- Abstract summary: The Quantum Max-$d$-Cut problem involves finding a quantum state that maximizes the expected energy associated with the projector onto the antisymmetric subspace of two, $d$-dimensional qudits over all local interactions.
We develop an algorithm that finds product-state solutions of mixed states with bounded purity that achieve non-trivial performance guarantees.
- Score: 42.248442410060946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We initiate the algorithmic study of the Quantum Max-$d$-Cut problem, a
quantum generalization of the well-known Max-$d$-Cut problem. The Quantum
Max-$d$-Cut problem involves finding a quantum state that maximizes the
expected energy associated with the projector onto the antisymmetric subspace
of two, $d$-dimensional qudits over all local interactions. Equivalently, this
problem is physically motivated by the $SU(d)$-Heisenberg model, a spin glass
model that generalized the well-known Heisenberg model over qudits. We develop
a polynomial-time randomized approximation algorithm that finds product-state
solutions of mixed states with bounded purity that achieve non-trivial
performance guarantees. Moreover, we prove the tightness of our analysis by
presenting an algorithmic gap instance for Quantum Max-d-Cut problem with $d
\geq 3$.
Related papers
- An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - The classical limit of Quantum Max-Cut [0.18416014644193066]
We show that the limit of large quantum spin $S$ should be understood as a semiclassical limit.
We present two families of classical approximation algorithms for $mathrmQMaxCut_S$ based on rounding the output of a semidefinite program to a product of Bloch coherent states.
arXiv Detail & Related papers (2024-01-23T18:53:34Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - On the approximability of random-hypergraph MAX-3-XORSAT problems with quantum algorithms [0.0]
A feature of constraint satisfaction problems in NP is approximation hardness, where in the worst case, finding sufficient-quality approximate solutions is exponentially hard.
For algorithms based on Hamiltonian time evolution, we explore this question through the prototypically hard MAX-3-XORSAT problem class.
We show that, for random hypergraphs in the approximation-hard regime, if we define the energy to be $E = N_mathrmunsat-N_mathrmsat$, spectrally filtered quantum optimization will return states with $E leq q_m.
arXiv Detail & Related papers (2023-12-11T04:15:55Z) - Alleviating the quantum Big-$M$ problem [0.237499051649312]
Classically known as the "Big-$M$" problem, it affects the physical energy scale.
We take a systematic, encompassing look at the quantum big-$M$ problem, revealing NP-hardness in finding the optimal $M$.
We propose a practical translation algorithm, based on SDP relaxation, that outperforms previous methods in numerical benchmarks.
arXiv Detail & Related papers (2023-07-19T18:00:05Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Towards a Quantum Simulation of Nonlinear Sigma Models with a
Topological Term [0.0]
We show that the quantum theory is massless in the strong-coupling regime.
We also highlight the limitations of current quantum algorithms, designed for noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2022-10-07T16:35:03Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.