Disentangling critical quantum spin chains with Clifford circuits
- URL: http://arxiv.org/abs/2411.12683v2
- Date: Tue, 11 Feb 2025 16:56:20 GMT
- Title: Disentangling critical quantum spin chains with Clifford circuits
- Authors: Chaohui Fan, Xiangjian Qian, Hua-Chen Zhang, Rui-Zhen Huang, Mingpu Qin, Tao Xiang,
- Abstract summary: We explore the power of the CAMPS method in critical spin chains described by conformal field theories (CFTs) in the scaling limit.
We find that the optimized disentanglers correspond to it duality transformations, which significantly reduce the entanglement entropy in the ground state.
Our results highlight the potential of the framework as a versatile tool for uncovering hidden dualities and simplifying the entanglement structure of critical quantum systems.
- Score: 39.58317527488534
- License:
- Abstract: Clifford circuits can be utilized to disentangle quantum states with polynomial cost, thanks to the Gottesman-Knill theorem. Based on this idea, the Clifford circuits augmented matrix product states (CAMPS) method, which is a seamless integration of Clifford circuits within the density-matrix renormalization group algorithm, was proposed recently and was shown to be able to reduce entanglement in various quantum systems. In this work, we further explore the power of the CAMPS method in critical spin chains described by conformal field theories (CFTs) in the scaling limit. We find that the optimized disentanglers correspond to {\it duality} transformations, which significantly reduce the entanglement entropy in the ground state. For the critical quantum Ising spin chain governed by the Ising CFT with self-duality, the Clifford circuits found by CAMPS coincide with the duality transformation, i.e., the Kramers-Wannier self-duality in the critical Ising chain. It reduces the entanglement entropy by mapping the free conformal boundary condition to the fixed one. In the more general case of the XXZ chain, the CAMPS gives rise to a duality transformation mapping the model to the quantum Ashkin-Teller spin chain. Our results highlight the potential of the framework as a versatile tool for uncovering hidden dualities and simplifying the entanglement structure of critical quantum systems.
Related papers
- Efficient Eigenstate Preparation in an Integrable Model with Hilbert Space Fragmentation [42.408991654684876]
We consider the preparation of all the eigenstates of spin chains using quantum circuits.
We showivities of the growth is also achievable for interacting models where the interaction between the particles is sufficiently simple.
arXiv Detail & Related papers (2024-11-22T18:57:08Z) - Phonon Dephasing, Entanglement and Exchange-Only Toffoli Gate Sequence in Quantum Dot Spin Chains [0.0]
Quantum dot spin chain system is vital for quantum simulation and studying collective electron behaviors.
Chapter 1 introduces key concepts, focusing on the extended Hubbard model, double quantum dot systems, and electron-phonon coupling.
Chapter 3 investigates entanglement entropy in a multielectron quantum dot spin chain described by the extended Hubbard model.
Chapter 4 explores operation sequences in a nine-spin, nine-quantum-dot system defined by the Heisenberg model.
arXiv Detail & Related papers (2024-09-23T06:26:08Z) - QuCLEAR: Clifford Extraction and Absorption for Significant Reduction in Quantum Circuit Size [8.043057448895343]
Currently available quantum devices suffer from noisy quantum gates, which degrade the fidelity of executed quantum circuits.
We present QuCLEAR, a compilation framework designed to optimize quantum circuits.
arXiv Detail & Related papers (2024-08-23T18:03:57Z) - Collective quantum enhancement in critical quantum sensing [37.69303106863453]
We show that collective quantum advantage can be achieved with a multipartite critical quantum sensor based on a parametrically coupled Kerr resonators chain.
We derive analytical solutions for the low-energy spectrum of this unconventional quantum many-body system.
We evaluate the scaling of the quantum Fisher information with respect to fundamental resources, and find that the critical chain achieves a quadratic enhancement in the number of resonators.
arXiv Detail & Related papers (2024-07-25T14:08:39Z) - Utilizing Quantum Processor for the Analysis of Strongly Correlated Materials [34.63047229430798]
This study introduces a systematic approach for analyzing strongly correlated systems by adapting the conventional quantum cluster method to a quantum circuit model.
We have developed a more concise formula for calculating the cluster's Green's function, requiring only real-number computations on the quantum circuit instead of complex ones.
arXiv Detail & Related papers (2024-04-03T06:53:48Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Crystalline Quantum Circuits [0.0]
Random quantum circuits continue to inspire a wide range of applications in quantum information science and many-body quantum physics.
Motivated by an interest in deterministic circuits with similar applications, we construct classes of textitnonrandom unitary Clifford circuits.
A full classification on the square lattice reveals, of particular interest, a "nonfractal good scrambling class" with dense operator spreading.
arXiv Detail & Related papers (2022-10-19T18:00:57Z) - Entanglement Entropy of $(2+1)$D Quantum Critical Points with Quenched
Disorder: Dimensional Reduction Approach [0.0]
We compute the entanglement entropy of $(2+1)$-dimensional quantum critical points with randomness.
As a concrete example, we reveal novel entanglement signatures of $(2+1)$-dimensional Dirac fermion exposed to a random magnetic field.
arXiv Detail & Related papers (2022-01-13T15:55:14Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.