論文の概要: Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations
- arxiv url: http://arxiv.org/abs/2404.18812v1
- Date: Mon, 29 Apr 2024 15:49:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 01:28:11.263812
- Title: Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations
- Title(参考訳): 学習されたスパース表現に対する近似検索のための効率的な逆索引
- Authors: Sebastian Bruch, Franco Maria Nardini, Cosimo Rulli, Rossano Venturini,
- Abstract要約: 本稿では,学習したスパース埋め込みを高速に検索できる逆インデックスの新たな組織を提案する。
提案手法では,逆リストを幾何学的に結合したブロックに整理し,それぞれに要約ベクトルを備える。
以上の結果から, 地震動は, 最先端の逆インデックスベースソリューションよりも1~2桁高速であることが示唆された。
- 参考スコア(独自算出の注目度): 8.796275989527054
- License:
- Abstract: Learned sparse representations form an attractive class of contextual embeddings for text retrieval. That is so because they are effective models of relevance and are interpretable by design. Despite their apparent compatibility with inverted indexes, however, retrieval over sparse embeddings remains challenging. That is due to the distributional differences between learned embeddings and term frequency-based lexical models of relevance such as BM25. Recognizing this challenge, a great deal of research has gone into, among other things, designing retrieval algorithms tailored to the properties of learned sparse representations, including approximate retrieval systems. In fact, this task featured prominently in the latest BigANN Challenge at NeurIPS 2023, where approximate algorithms were evaluated on a large benchmark dataset by throughput and recall. In this work, we propose a novel organization of the inverted index that enables fast yet effective approximate retrieval over learned sparse embeddings. Our approach organizes inverted lists into geometrically-cohesive blocks, each equipped with a summary vector. During query processing, we quickly determine if a block must be evaluated using the summaries. As we show experimentally, single-threaded query processing using our method, Seismic, reaches sub-millisecond per-query latency on various sparse embeddings of the MS MARCO dataset while maintaining high recall. Our results indicate that Seismic is one to two orders of magnitude faster than state-of-the-art inverted index-based solutions and further outperforms the winning (graph-based) submissions to the BigANN Challenge by a significant margin.
- Abstract(参考訳): 学習されたスパース表現は、テキスト検索のためのコンテキスト埋め込みの魅力的なクラスを形成する。
それは、それらが効果的な関係のモデルであり、設計によって解釈できるからである。
しかし、逆インデックスとの明らかな互換性にもかかわらず、スパース埋め込みによる検索は依然として困難である。
これは、学習した埋め込みとBM25のような関連する項周波数ベースの語彙モデルとの分布的な違いによるものである。
この課題を認識して、近似的な検索システムを含む、学習されたスパース表現の特性に合わせた検索アルゴリズムを設計するなど、多くの研究が進められている。
実際、このタスクはNeurIPS 2023で行われた最新のBigANN Challengeで顕著に取り上げられ、スループットとリコールによって、大規模なベンチマークデータセット上で近似アルゴリズムが評価された。
本研究では,学習されたスパース埋め込み上で高速かつ効果的な近似検索を可能にする逆インデックスの新たな組織を提案する。
提案手法では,逆リストを幾何学的に結合したブロックに整理し,それぞれに要約ベクトルを備える。
問合せ処理中、ブロックを要約を用いて評価する必要があるかどうかを素早く判断する。
実験により,本手法を用いた単一スレッドクエリ処理は,高いリコールを維持しつつ,MS MARCOデータセットの様々なスパース埋め込みにおいて,サブミリ秒毎のレイテンシに達することを示した。
以上の結果から, 地震は, 最先端の逆インデックスベースソリューションよりも1~2桁早く, ビッグANNチャレンジでの勝利(グラフベース)をはるかに上回っていることが示唆された。
関連論文リスト
- pEBR: A Probabilistic Approach to Embedding Based Retrieval [4.8338111302871525]
埋め込み検索は、クエリとアイテムの両方の共有セマンティック表現空間を学習することを目的としている。
現在の産業実践では、検索システムは典型的には、異なるクエリに対して一定数のアイテムを検索する。
論文 参考訳(メタデータ) (2024-10-25T07:14:12Z) - Efficient Retrieval with Learned Similarities [2.729516456192901]
最先端の検索アルゴリズムは、学習された類似点に移行した。
筆者らは,Mixture-of-Logits (MoL) が普遍近似であり,学習された類似度関数を全て表現できることを示した。
MoLはレコメンデーション検索タスクに新たな最先端結果を設定し、学習した類似性を持つ近似トップk検索は、最大2桁のレイテンシでベースラインを上回ります。
論文 参考訳(メタデータ) (2024-07-22T08:19:34Z) - SparseCL: Sparse Contrastive Learning for Contradiction Retrieval [87.02936971689817]
コントラディション検索(Contradiction Search)とは、クエリの内容に明示的に異を唱える文書を識別し、抽出することである。
類似性探索やクロスエンコーダモデルといった既存の手法には、大きな制限がある。
文間の微妙で矛盾したニュアンスを保存するために特別に訓練された文埋め込みを利用するSparseCLを導入する。
論文 参考訳(メタデータ) (2024-06-15T21:57:03Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
しばしば見過ごされる設計選択は、コーパスが索引付けされる検索単位である。
本稿では,高密度検索のための新しい検索ユニット,命題を提案する。
実験により、提案のような細粒度単位によるコーパスのインデックス付けは、検索タスクにおける通過レベル単位を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-12-11T18:57:35Z) - Temporal-aware Hierarchical Mask Classification for Video Semantic
Segmentation [62.275143240798236]
ビデオセマンティックセグメンテーションデータセットは、ビデオ毎のカテゴリが限られている。
VSSトレーニング中に意味のある勾配更新を受けるために、クエリの10%未満がマッチする可能性がある。
提案手法は,最新のVSSベンチマークVSPWにおいてベルやホイッスルを使わずに,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-09-14T20:31:06Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
LADR (Lexically-Accelerated Dense Retrieval) は, 既存の高密度検索モデルの効率を向上する, 簡便な手法である。
LADRは、標準ベンチマークでの徹底的な検索と同等の精度とリコールの両方を一貫して達成する。
論文 参考訳(メタデータ) (2023-07-31T15:44:26Z) - How Does Generative Retrieval Scale to Millions of Passages? [68.98628807288972]
各種コーパス尺度における生成的検索手法の実証的研究を行った。
我々は8.8Mパスのコーパスで数百万のパスに生成検索をスケールし、モデルサイズを最大11Bパラメータまで評価する。
生成的検索は、小さなコーパス上の最先端のデュアルエンコーダと競合するが、数百万のパスへのスケーリングは依然として重要で未解決の課題である。
論文 参考訳(メタデータ) (2023-05-19T17:33:38Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
本研究は,アクションクエリを備えたエンコーダ・デコーダフレームワークを用いて,時間的行動検出(TAD)の進展を図ることを目的とする。
まず,デコーダ内の関係注意機構を提案し,その関係に基づいてクエリ間の関心を誘導する。
最後に、高品質なクエリを区別するために、推論時に各アクションクエリのローカライズ品質を予測することを提案する。
論文 参考訳(メタデータ) (2022-07-14T17:46:37Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
グラフマッチングアルゴリズムは、クエリグラフの埋め込みをデータグラフGに列挙する。
マッチング順序は、これらのバックトラックに基づくサブグラフマッチングアルゴリズムの時間効率において重要な役割を果たす。
本稿では,Reinforcement Learning (RL) と Graph Neural Networks (GNN) 技術を適用して,グラフマッチングアルゴリズムの高品質なマッチング順序を生成する。
論文 参考訳(メタデータ) (2022-01-25T00:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。