論文の概要: How Does Generative Retrieval Scale to Millions of Passages?
- arxiv url: http://arxiv.org/abs/2305.11841v1
- Date: Fri, 19 May 2023 17:33:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 13:10:23.731675
- Title: How Does Generative Retrieval Scale to Millions of Passages?
- Title(参考訳): ジェネレーティブ検索はいかにして数百万のパスにスケールするか?
- Authors: Ronak Pradeep, Kai Hui, Jai Gupta, Adam D. Lelkes, Honglei Zhuang,
Jimmy Lin, Donald Metzler, Vinh Q. Tran
- Abstract要約: 各種コーパス尺度における生成的検索手法の実証的研究を行った。
我々は8.8Mパスのコーパスで数百万のパスに生成検索をスケールし、モデルサイズを最大11Bパラメータまで評価する。
生成的検索は、小さなコーパス上の最先端のデュアルエンコーダと競合するが、数百万のパスへのスケーリングは依然として重要で未解決の課題である。
- 参考スコア(独自算出の注目度): 68.98628807288972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Popularized by the Differentiable Search Index, the emerging paradigm of
generative retrieval re-frames the classic information retrieval problem into a
sequence-to-sequence modeling task, forgoing external indices and encoding an
entire document corpus within a single Transformer. Although many different
approaches have been proposed to improve the effectiveness of generative
retrieval, they have only been evaluated on document corpora on the order of
100k in size. We conduct the first empirical study of generative retrieval
techniques across various corpus scales, ultimately scaling up to the entire MS
MARCO passage ranking task with a corpus of 8.8M passages and evaluating model
sizes up to 11B parameters. We uncover several findings about scaling
generative retrieval to millions of passages; notably, the central importance
of using synthetic queries as document representations during indexing, the
ineffectiveness of existing proposed architecture modifications when accounting
for compute cost, and the limits of naively scaling model parameters with
respect to retrieval performance. While we find that generative retrieval is
competitive with state-of-the-art dual encoders on small corpora, scaling to
millions of passages remains an important and unsolved challenge. We believe
these findings will be valuable for the community to clarify the current state
of generative retrieval, highlight the unique challenges, and inspire new
research directions.
- Abstract(参考訳): 微分検索インデックス(英語版)によって一般化され、生成検索の新たなパラダイムは、古典的な情報検索問題をシーケンスからシーケンスへのモデリングタスクに再編成し、外部インデックスをフォージし、文書コーパス全体を単一のトランスフォーマーにエンコードする。
生成的検索の有効性を改善するために多くの異なる手法が提案されているが、文書コーパスでは100kの精度で評価されている。
様々なコーパススケールにわたる生成的検索手法の最初の実証研究を行い、最終的に8.8mパスのコーパスでmsマルコパスランキングタスク全体までスケールアップし、モデルサイズを最大1bパラメータまで評価した。
特に、インデックス作成中に文書表現として合成クエリを使うことの重要性、計算コストを考慮に入れた場合の既存のアーキテクチャ変更の非効率性、検索性能に関するモデルパラメータのNaivelyスケーリングの限界について、いくつかの発見を行った。
生成的検索は、小さなコーパス上の最先端のデュアルエンコーダと競合するが、数百万のパスへのスケーリングは重要な課題であり、未解決の課題である。
これらの発見は、コミュニティにとって、生成的検索の現状を明確にし、ユニークな課題を強調し、新しい研究の方向性を刺激する上で価値があると信じている。
関連論文リスト
- Quam: Adaptive Retrieval through Query Affinity Modelling [15.3583908068962]
ユーザ情報要求に基づいて文書をランク付けする関連モデルを構築することは,情報検索とNLPコミュニティの中心的な課題である。
提案するQuamにより,適応検索の初期段階の統一的な視点を提案する。
提案手法であるQuamは,リコール性能を26%向上させる。
論文 参考訳(メタデータ) (2024-10-26T22:52:12Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
我々は、エンドツーエンドのクロスモーダル検索のための先駆的なジェネリッククロスモーダル rEtrieval framework (ACE) を提案する。
ACEは、クロスモーダル検索における最先端のパフォーマンスを達成し、Recall@1の強いベースラインを平均15.27%上回る。
論文 参考訳(メタデータ) (2024-06-25T12:47:04Z) - Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations [8.796275989527054]
本稿では,学習したスパース埋め込みを高速に検索できる逆インデックスの新たな組織を提案する。
提案手法では,逆リストを幾何学的に結合したブロックに整理し,それぞれに要約ベクトルを備える。
以上の結果から, 地震動は, 最先端の逆インデックスベースソリューションよりも1~2桁高速であることが示唆された。
論文 参考訳(メタデータ) (2024-04-29T15:49:27Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
本稿では,2つのタスクを同時に実行可能なRe rank-Truncation joint model(GenRT)を提案する。
GenRTは、エンコーダ-デコーダアーキテクチャに基づく生成パラダイムによるリランクとトランケーションを統合している。
提案手法は,Web検索および検索拡張LLMにおけるリランクタスクとトラルケーションタスクの両方においてSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-02-05T06:52:53Z) - GAR-meets-RAG Paradigm for Zero-Shot Information Retrieval [16.369071865207808]
本稿では,既存のパラダイムの課題を克服する新しいGAR-meets-RAG再帰の定式化を提案する。
鍵となる設計原則は、リライト・検索段階がシステムのリコールを改善し、最終段階が精度を向上させることである。
我々の手法はBEIRベンチマークで新たな最先端性を確立し、8つのデータセットのうち6つでRecall@100とnDCG@10の指標で過去の最高の結果を上回った。
論文 参考訳(メタデータ) (2023-10-31T03:52:08Z) - MGAS: Multi-Granularity Architecture Search for Trade-Off Between Model
Effectiveness and Efficiency [10.641875933652647]
我々は,多粒度アーキテクチャサーチ(MGAS)を導入し,効率的かつ効率的なニューラルネットワークを探索する。
各粒度レベル固有の離散化関数を学習し、進化したアーキテクチャに従って単位残率を適応的に決定する。
CIFAR-10、CIFAR-100、ImageNetの大規模な実験により、MGASはモデル性能とモデルサイズとのトレードオフを改善するために、他の最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-23T16:32:18Z) - DSI++: Updating Transformer Memory with New Documents [95.70264288158766]
DSI++は、DSIが新たなドキュメントをインクリメンタルにインデクシングするための継続的な学習課題である。
新たな文書の連続的な索引付けは,それまでの索引付け文書をかなり忘れてしまうことを示す。
文書の擬似クエリをサンプルとして生成メモリを導入し、連続的なインデックス付け中に補足することで、検索タスクの忘れを防止する。
論文 参考訳(メタデータ) (2022-12-19T18:59:34Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
単一ステップ生成モデルは、検索プロセスを劇的に単純化し、エンドツーエンドで最適化することができる。
我々は、事前学習された生成検索モデルをCorpsBrainと名付け、コーパスに関する全ての情報が、追加のインデックスを構築することなく、そのパラメータにエンコードされる。
論文 参考訳(メタデータ) (2022-08-16T10:22:49Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。