論文の概要: More RLHF, More Trust? On The Impact of Preference Alignment On Trustworthiness
- arxiv url: http://arxiv.org/abs/2404.18870v2
- Date: Sat, 21 Dec 2024 22:56:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:54:46.376766
- Title: More RLHF, More Trust? On The Impact of Preference Alignment On Trustworthiness
- Title(参考訳): よりRLHF、より信頼? 選好アライメントが信頼に与える影響について
- Authors: Aaron J. Li, Satyapriya Krishna, Himabindu Lakkaraju,
- Abstract要約: 本研究では,5つの信頼性分野において,汎用的嗜好データに整合したモデルがどのように機能するかを検討する。
ヒトの嗜好に対するRLHFは、自動的に信頼性を保証せず、しばしば逆効果が観察される。
本稿では,RLHF設定に効率的な影響関数に基づくデータ帰属手法を適用し,個々の信頼性ベンチマークに対する微調整データの影響をよりよく理解するために提案する。
- 参考スコア(独自算出の注目度): 24.843692458375436
- License:
- Abstract: The trustworthiness of Large Language Models (LLMs) refers to the extent to which their outputs are reliable, safe, and ethically aligned, and it has become a crucial consideration alongside their cognitive performance. In practice, Reinforcement Learning From Human Feedback (RLHF) has been widely used to align LLMs with labeled human preferences, but its assumed effect on model trustworthiness hasn't been rigorously evaluated. To bridge this knowledge gap, this study investigates how models aligned with general-purpose preference data perform across five trustworthiness verticals: toxicity, stereotypical bias, machine ethics, truthfulness, and privacy. Our results demonstrate that RLHF on human preferences doesn't automatically guarantee trustworthiness, and reverse effects are often observed. Furthermore, we propose to adapt efficient influence function based data attribution methods to the RLHF setting to better understand the influence of fine-tuning data on individual trustworthiness benchmarks, and show its feasibility by providing our estimated attribution scores. Together, our results underscore the need for more nuanced approaches for model alignment from both the data and framework perspectives, and we hope this research will guide the community towards developing language models that are increasingly capable without sacrificing trustworthiness.
- Abstract(参考訳): LLM(Large Language Models)の信頼性は、アウトプットが信頼性、安全、倫理的に整合している範囲を指しており、認知能力とともに重要な考慮事項となっている。
実際には、人間からのフィードバックからの強化学習(RLHF)は、LLMをラベル付き人間の好みに合わせるために広く用いられてきたが、モデル信頼性に対するその仮定効果は厳密に評価されていない。
この知識ギャップを埋めるために、本研究では、毒性、ステレオタイプバイアス、機械倫理、真理性、プライバシの5つの信頼性分野において、汎用的嗜好データと整合したモデルがどのように機能するかを調査する。
ヒトの嗜好に対するRLHFは、自動的に信頼性を保証せず、しばしば逆効果が観察される。
さらに、RLHF設定に効率的な影響関数に基づくデータ帰属手法を適用し、個別の信頼性ベンチマークに対する微調整データの影響をよりよく理解し、推定属性スコアを提供することにより、その実現可能性を示す。
データとフレームワークの両方の観点から、モデルアライメントのためのよりきめ細やかなアプローチの必要性を強調します。この研究は、信頼性を犠牲にすることなく、より多くの能力を持つ言語モデルの開発に向けて、コミュニティを導くことを願っています。
関連論文リスト
- Seeing Eye to AI: Human Alignment via Gaze-Based Response Rewards for Large Language Models [46.09562860220433]
暗黙のフィードバック(特に眼球追跡(ET)データ)をReward Model(RM)に統合する新しいフレームワークであるGazeRewardを紹介します。
提案手法は、確立された人間の嗜好データセット上でのRMの精度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T13:24:56Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
人間の嗜好を微調整した大型言語モデル(LLM)は、その能力向上に成功している。
しかし、微調整中のLLMの安全性確保は依然として重要な懸念事項である。
本稿では,BFPO(Bi-Factorial Preference Optimization)と呼ばれる教師あり学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-27T17:31:21Z) - Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF [82.7679132059169]
人間のフィードバックから強化学習が言語モデルのアライメントのための中心的なツールとして登場した。
我々は、RLHFにおけるオンライン探索のための新しいアルゴリズム、Exploratory Preference Optimization (XPO)を提案する。
XPOは証明可能な最強の保証と有望な経験的パフォーマンスを享受しています。
論文 参考訳(メタデータ) (2024-05-31T17:39:06Z) - MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with
Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) は、言語モデルと人間の嗜好を一致させる。
予測最大化アルゴリズムを用いて嗜好分布の混合を学習し、人間の嗜好をよりよく表現する。
従来のRLHFアルゴリズムよりも16%以上の勝利率向上を実現している。
論文 参考訳(メタデータ) (2024-02-14T03:56:27Z) - Active Preference Learning for Large Language Models [12.093302163058436]
我々は、好みラベルをよりよく活用するために、DPOのアクティブな学習戦略を開発する。
本稿では,言語モデルの予測エントロピーに基づく,プロンプト/コンプリートペアの実用的な獲得関数を提案する。
提案手法は,ペアの選好データに基づく微調整の学習率と最終性能の両方を改善する方法を示す。
論文 参考訳(メタデータ) (2024-02-12T23:09:00Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z) - Aligning Large Language Models with Human Preferences through Representation Engineering [41.81020951061438]
表現工学(RepE)の新たな分野から着想を得た本研究は,LLM内の活動パターンに埋め込まれた高レベルの人間の嗜好の関連表現を特定することを目的としている。
この新しいアプローチは、人間フィードバックからの表現アライメント(Representation Alignment from Human Feedback、RAHF)と呼ばれ、効果的で、計算的に効率的で、実装が容易であることが証明されている。
論文 参考訳(メタデータ) (2023-12-26T11:01:36Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
本稿では,RLHFにおける報酬モデルの新たなパラメータ化について紹介する。
DPO(Direct Preference Optimization)と呼ばれる結果のアルゴリズムは、安定的で、性能が高く、計算的にも軽量である。
我々の実験は、DPOが人間の好みに合わせて微調整できるだけでなく、既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-29T17:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。