論文の概要: TheaterGen: Character Management with LLM for Consistent Multi-turn Image Generation
- arxiv url: http://arxiv.org/abs/2404.18919v1
- Date: Mon, 29 Apr 2024 17:58:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 12:39:07.413330
- Title: TheaterGen: Character Management with LLM for Consistent Multi-turn Image Generation
- Title(参考訳): TheaterGen: 一貫性のあるマルチターン画像生成のためのLCMによる文字管理
- Authors: Junhao Cheng, Baiqiao Yin, Kaixin Cai, Minbin Huang, Hanhui Li, Yuxin He, Xi Lu, Yue Li, Yifei Li, Yuhao Cheng, Yiqiang Yan, Xiaodan Liang,
- Abstract要約: TheaterGenは、大規模な言語モデル(LLM)とテキスト・ツー・イメージ(T2I)モデルを統合した、トレーニング不要のフレームワークである。
このフレームワーク内では、LLMは"Screenwriter"として機能し、マルチターンインタラクションを行い、標準化されたプロンプトブックを生成し管理する。
プロンプトブックとキャラクタイメージの効果的な管理により、StaceGenは合成画像のセマンティックとコンテキスト整合性を大幅に改善する。
- 参考スコア(独自算出の注目度): 44.740794326596664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in diffusion models can generate high-quality and stunning images from text. However, multi-turn image generation, which is of high demand in real-world scenarios, still faces challenges in maintaining semantic consistency between images and texts, as well as contextual consistency of the same subject across multiple interactive turns. To address this issue, we introduce TheaterGen, a training-free framework that integrates large language models (LLMs) and text-to-image (T2I) models to provide the capability of multi-turn image generation. Within this framework, LLMs, acting as a "Screenwriter", engage in multi-turn interaction, generating and managing a standardized prompt book that encompasses prompts and layout designs for each character in the target image. Based on these, Theatergen generate a list of character images and extract guidance information, akin to the "Rehearsal". Subsequently, through incorporating the prompt book and guidance information into the reverse denoising process of T2I diffusion models, Theatergen generate the final image, as conducting the "Final Performance". With the effective management of prompt books and character images, TheaterGen significantly improves semantic and contextual consistency in synthesized images. Furthermore, we introduce a dedicated benchmark, CMIGBench (Consistent Multi-turn Image Generation Benchmark) with 8000 multi-turn instructions. Different from previous multi-turn benchmarks, CMIGBench does not define characters in advance. Both the tasks of story generation and multi-turn editing are included on CMIGBench for comprehensive evaluation. Extensive experimental results show that TheaterGen outperforms state-of-the-art methods significantly. It raises the performance bar of the cutting-edge Mini DALLE 3 model by 21% in average character-character similarity and 19% in average text-image similarity.
- Abstract(参考訳): 拡散モデルの最近の進歩は、テキストから高品質で素晴らしい画像を生成することができる。
しかし、実世界のシナリオでは高い需要があるマルチターン画像生成は、画像とテキスト間のセマンティックな一貫性を維持する上での課題と、複数のインタラクティブなターンをまたいで同じ主題のコンテキスト的一貫性に直面する。
この問題に対処するために,大規模言語モデル(LLM)とテキスト・ツー・イメージ(T2I)モデルを統合した,マルチターン画像生成機能を備えたトレーニングフリーフレームワークであるStaceGenを紹介した。
このフレームワーク内では、LLMは"Screenwriter"として機能し、マルチターンインタラクションを行い、ターゲット画像の各文字のプロンプトとレイアウト設計を含む標準化されたプロンプトブックを生成し管理する。
これらに基づいて、シアターゲンは「リハーサル」に似たキャラクターイメージのリストを作成し、ガイダンス情報を抽出する。
その後、T2I拡散モデルの逆復調過程にプロンプトブックとガイダンス情報を組み込むことで、シアターゲンは最終画像を生成し、「ファイナルパフォーマンス」を実行する。
プロンプトブックとキャラクタイメージの効果的な管理により、StaceGenは合成画像のセマンティックとコンテキスト整合性を大幅に改善する。
さらに,8000個のマルチターン命令を持つ専用ベンチマークCMIGBench(Consistent Multi-turn Image Generation Benchmark)を導入する。
以前のマルチターンベンチマークとは異なり、CMIGBenchは事前に文字を定義していない。
CMIGBenchには、ストーリー生成とマルチターン編集の両方のタスクが包括的評価のために含まれている。
大規模な実験結果から、StaceGenは最先端の手法よりも優れています。
これは、最先端のMini DALLE 3モデルのパフォーマンスバーを、平均的な文字-文字類似度で21%、平均的なテキスト-画像類似度で19%上昇させる。
関連論文リスト
- LLM4GEN: Leveraging Semantic Representation of LLMs for Text-to-Image Generation [30.897935761304034]
我々はtextbfLLM4GEN という新しいフレームワークを提案する。
特別に設計されたクロスアダプタモジュール(CAM)は、テキスト・ツー・イメージ・モデルのオリジナルのテキスト機能とLLM機能を統合する。
7000ドルの高密度プロンプトを含むDensePromptsは、テキスト・画像生成タスクの包括的な評価を提供する。
論文 参考訳(メタデータ) (2024-06-30T15:50:32Z) - Multi-modal Generation via Cross-Modal In-Context Learning [50.45304937804883]
複雑なマルチモーダルプロンプトシーケンスから新しい画像を生成するMGCC法を提案する。
我々のMGCCは、新しい画像生成、マルチモーダル対話の促進、テキスト生成など、多種多様なマルチモーダル機能を示している。
論文 参考訳(メタデータ) (2024-05-28T15:58:31Z) - Many-to-many Image Generation with Auto-regressive Diffusion Models [59.5041405824704]
本稿では,与えられた画像集合から関連画像系列を生成可能な多対多画像生成のためのドメイン汎用フレームワークを提案する。
我々は,25個の相互接続された画像を含む12Mの合成マルチイメージサンプルを含む,新しい大規模マルチイメージデータセットMISを提案する。
我々はM2Mを学習し、M2Mは多対多生成のための自己回帰モデルであり、各画像は拡散フレームワーク内でモデル化される。
論文 参考訳(メタデータ) (2024-04-03T23:20:40Z) - MM-Interleaved: Interleaved Image-Text Generative Modeling via Multi-modal Feature Synchronizer [106.79844459065828]
本稿では,画像テキストデータのエンドツーエンド生成モデルであるMM-Interleavedを提案する。
マルチスケールおよびマルチイメージ機能同期モジュールを導入し、以前のコンテキストできめ細かい画像機能に直接アクセスできるようにする。
MM-Interleavedはマルチモーダルな指示に従って視覚的詳細を認識し、テキストと視覚の両方の条件に従って一貫した画像を生成する。
論文 参考訳(メタデータ) (2024-01-18T18:50:16Z) - Emu: Generative Pretraining in Multimodality [43.759593451544546]
トランスフォーマーベースのマルチモーダル基礎モデルは、マルチモーダルコンテキストで画像やテキストをシームレスに生成することができる。
Emuは、画像からテキストまでのタスクとテキストから画像へのタスクの両方のための汎用マルチモーダルインターフェースとして機能する。
Emuは最先端の大規模マルチモーダルモデルと比較して非常に高い性能を示す。
論文 参考訳(メタデータ) (2023-07-11T12:45:39Z) - Scaling Autoregressive Models for Content-Rich Text-to-Image Generation [95.02406834386814]
Partiは、テキスト・ツー・イメージ生成をシーケンス・ツー・シーケンス・モデリング問題として扱う。
PartiはTransformerベースの画像トークンライザViT-VQGANを使用して、画像を離散トークンのシーケンスとしてエンコードする。
PartiPrompts (P2)は1600以上の英語のプロンプトの総合的なベンチマークである。
論文 参考訳(メタデータ) (2022-06-22T01:11:29Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
一連の自然言語キャプションが与えられた場合、エージェントはキャプションに対応する一連の画像を生成する必要がある。
それまでの作業では、このタスクで合成テキスト・画像モデルより優れた繰り返し生成モデルを導入してきた。
従来のモデリング手法には、デュアルラーニングフレームワークの追加など、いくつかの改善点を提示する。
論文 参考訳(メタデータ) (2021-05-20T20:42:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。