論文の概要: The Simpler The Better: An Entropy-Based Importance Metric To Reduce Neural Networks' Depth
- arxiv url: http://arxiv.org/abs/2404.18949v1
- Date: Sat, 27 Apr 2024 08:28:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 18:39:28.261273
- Title: The Simpler The Better: An Entropy-Based Importance Metric To Reduce Neural Networks' Depth
- Title(参考訳): ニューラルネットワークの深さを減らすためのエントロピーに基づく重要度基準
- Authors: Victor Quétu, Zhu Liao, Enzo Tartaglione,
- Abstract要約: 本稿では,大規模モデルによって伝達される事前知識を活用する効率戦略を提案する。
本稿では,過度にパラメータ化された深層ニューラルネットワークの深さを低減するために,エントロピー・バサード・インシデンス・mEtRic (EASIER) を利用する手法を提案する。
- 参考スコア(独自算出の注目度): 5.869633234882029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While deep neural networks are highly effective at solving complex tasks, large pre-trained models are commonly employed even to solve consistently simpler downstream tasks, which do not necessarily require a large model's complexity. Motivated by the awareness of the ever-growing AI environmental impact, we propose an efficiency strategy that leverages prior knowledge transferred by large models. Simple but effective, we propose a method relying on an Entropy-bASed Importance mEtRic (EASIER) to reduce the depth of over-parametrized deep neural networks, which alleviates their computational burden. We assess the effectiveness of our method on traditional image classification setups. The source code will be publicly released upon acceptance of the article.
- Abstract(参考訳): ディープニューラルネットワークは複雑なタスクを解くのに非常に効果的であるが、大きめの事前訓練されたモデルは、大きめのモデルの複雑さを必ずしも必要としない、一貫した単純化された下流タスクを解くためにも一般的に使用される。
成長を続けるAI環境の影響を意識して、我々は、大規模モデルによって伝達される事前知識を活用する効率戦略を提案する。
本稿では,過度にパラメータ化された深層ニューラルネットワークの深さを低減し,その計算負担を軽減するために,エントロピーをベースとした重要度mEtRic(EASIER)を利用する手法を提案する。
従来の画像分類設定における手法の有効性を評価する。
ソースコードは、この記事の受理時に公開される。
関連論文リスト
- NEPENTHE: Entropy-Based Pruning as a Neural Network Depth's Reducer [5.373015313199385]
深層ニューラルネットワークの計算負担を軽減するため,nEural Network depTHのrEducerとしてeNtropy-basEdプルーニングを提案する。
我々はMobileNetやSwin-Tといった一般的なアーキテクチャに対するアプローチを検証する。
論文 参考訳(メタデータ) (2024-04-24T09:12:04Z) - Self Expanding Convolutional Neural Networks [1.4330085996657045]
本稿では,学習中の畳み込みニューラルネットワーク(CNN)を動的に拡張する新しい手法を提案する。
我々は、単一のモデルを動的に拡張する戦略を採用し、様々な複雑さのレベルでチェックポイントの抽出を容易にする。
論文 参考訳(メタデータ) (2024-01-11T06:22:40Z) - Finding Influencers in Complex Networks: An Effective Deep Reinforcement
Learning Approach [13.439099770154952]
本稿では,従来のベストインフルエンスアルゴリズムよりも優れた性能を実現する効果的な強化学習モデルを提案する。
具体的には、グラフニューラルネットワークアルゴリズムをエンコーダとして、強化学習をデコーダとして組み合わせたエンドツーエンド学習フレームワークDREIMを設計する。
論文 参考訳(メタデータ) (2023-09-09T14:19:00Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - DDCNet: Deep Dilated Convolutional Neural Network for Dense Prediction [0.0]
受容場(ERF)とネットワーク内の空間的特徴の高分解能は、高分解能密度推定を提供することに不可欠である。
空間的特徴の解像度を高く保ちながら、より大きな受容場を提供できるネットワークアーキテクチャを設計するための体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-07-09T23:15:34Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z) - Differentiable Sparsification for Deep Neural Networks [0.0]
本稿では,ディープニューラルネットワークのための完全微分可能なスペーシフィケーション手法を提案する。
提案手法は,ネットワークのスパース化構造と重み付けの両方をエンドツーエンドに学習することができる。
私たちの知る限りでは、これが最初の完全に差別化可能なスパーシフィケーション手法である。
論文 参考訳(メタデータ) (2019-10-08T03:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。