論文の概要: Unifying Simulation and Inference with Normalizing Flows
- arxiv url: http://arxiv.org/abs/2404.18992v2
- Date: Thu, 9 May 2024 21:41:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:45:54.548339
- Title: Unifying Simulation and Inference with Normalizing Flows
- Title(参考訳): 正規化流れによる統一シミュレーションと推論
- Authors: Haoxing Du, Claudius Krause, Vinicius Mikuni, Benjamin Nachman, Ian Pang, David Shih,
- Abstract要約: エネルギー回帰のための条件付き生成モデルから最大極大推定(MLE)を用いて2つのタスクを統一できることを示す。
ATLASライクなカロリーメータシミュレーションを用いて、この概念をカロリーメータのエネルギーキャリブレーションの文脈で実証する。
- 参考スコア(独自算出の注目度): 0.08796261172196743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There have been many applications of deep neural networks to detector calibrations and a growing number of studies that propose deep generative models as automated fast detector simulators. We show that these two tasks can be unified by using maximum likelihood estimation (MLE) from conditional generative models for energy regression. Unlike direct regression techniques, the MLE approach is prior-independent and non-Gaussian resolutions can be determined from the shape of the likelihood near the maximum. Using an ATLAS-like calorimeter simulation, we demonstrate this concept in the context of calorimeter energy calibration.
- Abstract(参考訳): キャリブレーションを検出するためのディープニューラルネットワークの応用が数多くあり、自動高速検出器シミュレータとして深部生成モデルを提案する研究が増えている。
これらの2つのタスクは、エネルギー回帰のための条件付き生成モデルから最大極大推定(MLE)を用いて統一可能であることを示す。
直接回帰法とは異なり、MLE法は事前独立であり、非ガウス分解能は最大付近の確率の形状から決定できる。
ATLASライクなカロリーメータシミュレーションを用いて、この概念をカロリーメータのエネルギーキャリブレーションの文脈で実証する。
関連論文リスト
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Simulation-based inference using surjective sequential neural likelihood
estimation [50.24983453990065]
主観的逐次的ニューラルネットワーク類似度推定はシミュレーションに基づく推論の新しい手法である。
データを低次元空間に埋め込むことで、SSNLは高次元データセットに適用する際の従来の可能性ベースの手法が抱えるいくつかの問題を解く。
論文 参考訳(メタデータ) (2023-08-02T10:02:38Z) - Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
本稿では,物理系の観測可能な応答のサロゲートモデルの精度を向上させる手法を提案する。
本研究では,定常水理応答のBasis Adaptation (BA)法による代理モデル構築に提案手法を適用した。
論文 参考訳(メタデータ) (2023-07-05T18:14:38Z) - Machine Learning methods for simulating particle response in the Zero
Degree Calorimeter at the ALICE experiment, CERN [8.980453507536017]
現在、CERN GRIDの計算能力の半分以上が高エネルギー物理シミュレーションに使われている。
大型ハドロン衝突型加速器(LHC)の最新情報により、より効率的なシミュレーション手法の開発の必要性が高まっている。
機械学習を利用した問題に対する代替手法を提案する。
論文 参考訳(メタデータ) (2023-06-23T16:45:46Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Inductive Simulation of Calorimeter Showers with Normalizing Flows [0.0]
iCaloFlowは、連続したカロリー層内のエネルギー蓄積パターンに基づいて訓練された、誘導型正規化フローに基づく高速検出器シミュレーションのためのフレームワークである。
示すように、iCaloFlowは、以前考えられていたよりも10倍から100倍高い検出器測地上で高速で高忠実なシミュレーションを行う際に、フローを正規化する可能性を実現することができる。
論文 参考訳(メタデータ) (2023-05-19T18:00:00Z) - Geometry-aware Autoregressive Models for Calorimeter Shower Simulations [6.01665219244256]
本研究では, 幾何線量に基づく幾何学的自己回帰モデルを構築した。
これは、新しい目に見えないカロリーメーターに一般化できるモデルを構築するための、概念実証の重要なステップである。
このようなモデルは、大型ハドロン衝突型加速器実験において、カロリーメータシミュレーションに使用される数百の生成モデルを置き換えることができる。
論文 参考訳(メタデータ) (2022-12-16T01:45:17Z) - Aspects of scaling and scalability for flow-based sampling of lattice
QCD [137.23107300589385]
格子場理論におけるサンプリングへの機械学習正規化流れの最近の応用は、そのような手法が臨界減速と位相凍結を緩和できる可能性を示唆している。
最先端の格子量子色力学計算に適用できるかどうかはまだ定かではない。
論文 参考訳(メタデータ) (2022-11-14T17:07:37Z) - Maximum Likelihood Learning of Unnormalized Models for Simulation-Based
Inference [44.281860162298564]
シミュレーションベース推論のための2つの合成確率法を提案する。
本研究では,シミュレータによって生成された合成データを用いて,条件付きエネルギーベースモデル(EBM)を学習する。
本研究は, カニの神経科学ネットワークのモデルに適用し, 各種合成データセット上での両手法の特性を実証する。
論文 参考訳(メタデータ) (2022-10-26T14:38:24Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - DCTRGAN: Improving the Precision of Generative Models with Reweighting [1.2622634782102324]
深部生成モデルにポストホック補正を導入し,その忠実度をさらに向上する。
この補正は、生成された例に適用できる再重み付け関数の形を取る。
重み付き GAN の例は, 統計的パワーに大きな損失を伴わずに, 生成したサンプルの精度を著しく向上することを示した。
論文 参考訳(メタデータ) (2020-09-03T18:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。