論文の概要: Improving Interpretability of Deep Active Learning for Flood Inundation Mapping Through Class Ambiguity Indices Using Multi-spectral Satellite Imagery
- arxiv url: http://arxiv.org/abs/2404.19043v1
- Date: Mon, 29 Apr 2024 18:33:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 18:10:13.528774
- Title: Improving Interpretability of Deep Active Learning for Flood Inundation Mapping Through Class Ambiguity Indices Using Multi-spectral Satellite Imagery
- Title(参考訳): マルチスペクトル衛星画像を用いたクラスあいまい度指標による洪水浸水マップの深層能動学習の解釈可能性の向上
- Authors: Hyunho Lee, Wenwen Li,
- Abstract要約: 浸水マップは地球温暖化に伴う浸水リスクの増加に対応する重要な課題である。
教師付き学習における時間と労働集約的なデータラベリングプロセスに対処するため、深層学習戦略は実現可能なアプローチの1つである。
フラッドインダクションマッピング(IDAL-FIM)のための解釈可能な深部能動学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.842368798362815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flood inundation mapping is a critical task for responding to the increasing risk of flooding linked to global warming. Significant advancements of deep learning in recent years have triggered its extensive applications, including flood inundation mapping. To cope with the time-consuming and labor-intensive data labeling process in supervised learning, deep active learning strategies are one of the feasible approaches. However, there remains limited exploration into the interpretability of how deep active learning strategies operate, with a specific focus on flood inundation mapping in the field of remote sensing. In this study, we introduce a novel framework of Interpretable Deep Active Learning for Flood inundation Mapping (IDAL-FIM), specifically in terms of class ambiguity of multi-spectral satellite images. In the experiments, we utilize Sen1Floods11 dataset, and adopt U-Net with MC-dropout. In addition, we employ five acquisition functions, which are the random, K-means, BALD, entropy, and margin acquisition functions. Based on the experimental results, we demonstrate that two proposed class ambiguity indices are effective variables to interpret the deep active learning by establishing statistically significant correlation with the predictive uncertainty of the deep learning model at the tile level. Then, we illustrate the behaviors of deep active learning through visualizing two-dimensional density plots and providing interpretations regarding the operation of deep active learning, in flood inundation mapping.
- Abstract(参考訳): 浸水マップは地球温暖化に伴う浸水リスクの増加に対応する重要な課題である。
近年の深層学習の顕著な進歩は、洪水浸水マッピングを含む広範な応用のきっかけとなっている。
教師付き学習における時間と労働集約的なデータラベリングプロセスに対処するため、深層学習戦略は実現可能なアプローチの1つである。
しかし、リモートセンシングの分野では、洪水浸水マッピングに特化して、深層アクティブな学習戦略の運用方法の解釈可能性について、限定的な調査が続けられている。
本研究では,多スペクトル衛星画像のクラスあいまいさに特化して,Flood Inundation Mapping (IDAL-FIM) の解釈可能な深部能動学習フレームワークを提案する。
実験では、Sen1Floods11データセットを使用し、U-NetをMC-dropoutで採用する。
さらに, ランダム, K-平均, BALD, エントロピー, マージン獲得関数の5つの取得関数を用いる。
実験結果から,2つのクラスあいまい度指標が,タイルレベルでの深層学習モデルの予測的不確かさと統計的に有意な相関を定め,深層学習の解釈に有効な変数であることを実証した。
次に,2次元密度プロットを可視化し,深層能動学習の操作に関する解釈を提供することにより,深層能動学習の挙動を説明する。
関連論文リスト
- Semantics-Oriented Multitask Learning for DeepFake Detection: A Joint Embedding Approach [77.65459419417533]
本稿ではセマンティクス指向のDeepFake検出タスクをサポートするための自動データセット拡張手法を提案する。
また,顔画像とそれに対応するラベルを併用して予測を行う。
提案手法は,DeepFake検出の一般化性を向上し,人間の理解可能な説明を提供することで,ある程度のモデル解釈を行う。
論文 参考訳(メタデータ) (2024-08-29T07:11:50Z) - Unsupervised Semantic Segmentation Through Depth-Guided Feature Correlation and Sampling [14.88236554564287]
本研究では,シーンの構造に関する情報を学習プロセスに組み込むことにより,教師なし学習の進歩を構築する。
本研究では,(1)特徴マップと深度マップを空間的に相関させて深度-特徴相関を学習し,シーンの構造に関する知識を誘導する。
次に,シーンの深度情報に対する3次元サンプリング技術を利用して,より効果的に特徴を抽出するために,最遠点サンプリングを実装した。
論文 参考訳(メタデータ) (2023-09-21T11:47:01Z) - OCTAve: 2D en face Optical Coherence Tomography Angiography Vessel
Segmentation in Weakly-Supervised Learning with Locality Augmentation [14.322349196837209]
画素レベルのアノテーションを自動化するために,スクリブルベースの弱教師付き学習手法を提案する。
OCTAveと呼ばれる本提案手法は,スクリブルアノテートによる弱教師付き学習と,敵意と自己監督型自己監督型深層学習を組み合わせたものである。
論文 参考訳(メタデータ) (2022-07-25T14:40:56Z) - Semantics-Depth-Symbiosis: Deeply Coupled Semi-Supervised Learning of
Semantics and Depth [83.94528876742096]
我々は,意味的セグメンテーションと深さ推定という2つの密なタスクのMTL問題に取り組み,クロスチャネル注意モジュール(CCAM)と呼ばれる新しいアテンションモジュールを提案する。
次に,AffineMixと呼ばれる予測深度を用いた意味分節タスクのための新しいデータ拡張と,ColorAugと呼ばれる予測セマンティクスを用いた単純な深度増分を定式化する。
最後に,提案手法の性能向上をCityscapesデータセットで検証し,深度と意味に基づく半教師付きジョイントモデルにおける最先端結果の実現を支援する。
論文 参考訳(メタデータ) (2022-06-21T17:40:55Z) - X-Distill: Improving Self-Supervised Monocular Depth via Cross-Task
Distillation [69.9604394044652]
そこで本研究では,クロスタスク知識蒸留による単眼深度の自己指導的訓練を改善する手法を提案する。
トレーニングでは,事前訓練されたセマンティックセグメンテーション教師ネットワークを使用し,そのセマンティック知識を深度ネットワークに転送する。
提案手法の有効性をKITTIベンチマークで評価し,最新技術と比較した。
論文 参考訳(メタデータ) (2021-10-24T19:47:14Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - Towards Deep Clustering of Human Activities from Wearables [21.198881633580797]
本研究では,ウェアラブルからの人間行動認識の基本的な問題に対して,教師なしのエンドツーエンド学習戦略を開発する。
本研究では,センサデータの教師なし表現を協調的に学習し,異なる人間の活動に強い意味的対応を持つクラスタ代入を生成する手法の有効性を示す。
論文 参考訳(メタデータ) (2020-08-02T13:55:24Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。